skip to main content

ON CYCLIC DECOMPOSITION OF Z-MODULE M_{m×r}(Z_n)

*Ni Wayan Switrayni  -  University of Mataram, Indonesia
I Gede Adhitya Wisnu Wardhana  -  University of Mataram, Indonesia
Qurratul Aini  -  University of Mataram, Indonesia

Citation Format:
Abstract
A torsion module over a principal ideal domain has special properties related to the way how it is decomposed either into primary or cyclic submodules. This paper carries out a special case of such module over the ring of integer, which consists of all matrices with entries from the set of integer modulo n. The result shows that its decomposition depends on the prime factors of n.
Fulltext View|Download

Article Metrics:

  1. I. G. A. W. Wardhana, “The Decomposition of a Finitely Generated Module over Some Special Ring,” Jurnal Teori dan Aplikasi Matematika, vol. 6, no. 2, pp. 261—267, 2022
  2. I. G. A. W. Wardhana, F. Maulana, “Sebuah Karakteristik dari Modul Uniserial dan Gelanggang Uniserial,” Unisda Journal of Mathematics and Computer Science (UJMC), vol. 7, no. 2, pp. 9—18, 2021
  3. I. G. A.W.Wardhana, N.D.H. Ngiem, N.W. Switrayni, Q. Aini, “A Note on Almost Prime Submodule of CSM Module over Principal Ideal Domain,” In Journal of Physics: Conference Series, vol. 2106, no. 1, pp. 012011, 2021
  4. I. G. A. W. Wardhana, P. Astuti, I. M. Alamsyah, “On Almost Prime Submodules of a Module over a Principal Ideal Domain,” JP Journal of Algebra, Number Theory and Applications, vol. 38, no. 2, pp. 121—128, 2016
  5. W. U. Misuki, I. G. A. W. Wardhana, N. W. Switrayni, “ Some Characteristics of Prime Cyclic Ideal On Gaussian Integer Ring Modulo,” In IOP Conference Series: Materials Science and Engineering, vol. 1115, no. 1, pp. 012084, 2021
  6. R. Juliana, I. G. A.W. Wardhana, Irwansyah, “Some Characteristics of Cyclic Prime, Weakly Prime and Almost Prime Submodule of Gaussian Integer Modulo over Integer,” In AIP Conference Proceedings, vol. 2329, no. 1, pp. 020004, 2021
  7. I. G. A.W.Wardhana, N.W. Switrayni, Q. Aini, “Submodul Prima Lemah dan Submodul Hampir Prima Pada Z-Modul M2×2(Z9),” Eigen Mathematics Journal, vol. 1, no. 1, pp. 28—30, 2018
  8. I. G. A. W. Wardhana, N. W. Switrayni, Q. Aini, “Submodul Prima, Submodul Prima Lemah dan Submodul Hampir Prima Pada Z-Modul M2×2(Zn),” Proceeding of Konferensi Nasional Matematika XIX, Indonesian Mathematical Society, ISBN: 978-623-94020-0-6, pp. 85—89, 2018
  9. P. E. Bland, Rings and Their Modules. Berlin: De Gruyter, 2011
  10. D. S. Passman, A Course in Ring Theory. USA: AMS Chelsea Publishing, 2004
  11. S. Roman, Advanced Linear Algebra, Third Edition. New York: Springer, 2008

Last update:

No citation recorded.

Last update:

No citation recorded.