skip to main content

SOME CARTESIAN PRODUCTS OF A PATH AND PRISM RELATED GRAPHS THAT ARE EDGE ODD GRACEFUL

*Yeni Susanti  -  Dept. of Mathematics, Gadjah Mada University, Indonesia
Iwan Ernanto  -  Dept. of Mathematics, Gadjah Mada University, Indonesia
Aluysius Sutjijana  -  Dept. of Mathematics, Gadjah Mada University, Indonesia
Sufyan Sidiq  -  Dept. of Mathematics, Gadjah Mada University, Indonesia

Citation Format:
Abstract

Let $G$ be a connected undirected simple graph of size $q$ and let $k$ be the maximum number of its order and its size. Let $f$ be a bijective edge labeling which codomain is the set of odd integers from 1 up to $2q-1$. Then $f$ is called an edge odd graceful on $G$ if the weights of all vertices are distinct, where the weight of a vertex $v$ is defined as the sum $mod(2k)$ of all labels of edges incident to $v$. Any graph that admits an edge odd graceful labeling is called an edge odd graceful graph. In this paper, some new graph classes that are edge odd graceful are presented, namely some cartesian products of path of length two and some circular related graphs.

Fulltext View|Download
Keywords: edge odd graceful graphs; edge odd graceful labeling; cycle; prism graphs; antiprism graphs; path; cartesian product

Article Metrics:

  1. M. Bau{c}a, I. Holl¨ander and K.W. Lih, Two classes of super-magic quartic graphs,
  2. %textit{J. Combin. Math. Combin. Comput.}, textbf{23} 113-120 (1997)
  3. M. Bau{c}a, S. Jendrov{l}, M. Miller and J. Ryan, Antimagic labelings of generalized
  4. % Petersen graphs that are plane, textit{Ars Combin.}, textbf{73} 115-128 (2004)
  5. M. Bau{c}a, S. Jendrov{l}, M. Miller and J. Ryan, On irregular total labellings, textit{Discrete Mathematics}, textbf{307} 1378–1388 (2007)
  6. M. Bau{c}a and M.K. Siddiqui, Total edge irregularity strength of generalized prism, textit{Applied Mathematics and Computation}, textbf{235} 168–173 (2014)
  7. G.S. Bloom and S.W. Golomb, Application of numbered undirected graphs, Proc. IEEE textbf{65} (4) 562-570 (1977)
  8. G.S. Bloom and S.W. Golomb, Numbered complete graphs, unusual rulers and assorted applications, in: Theory and applications of Graphs in: Lecture Notes in Math, textbf{642} 53-65 (1978), Springer-Verlag, New York
  9. R. Cattel, Graceful labellings of paths, textit{Discrete Mathematics}, textbf{307}-24 3161-3176 (2007)
  10. S.N. Daoud, Edge odd graceful labeling of some path and cycle related graphs, textit{AKCE International Journal of Graphs and Combinatorics}, textbf{14} 178-203 (2017)
  11. J.A. Gallian, A dynamic survey of graph labelling, emph{The Electronic Journal of Combinatorics}, textbf{17} (2017).% DS6
  12. J. Ivanu{c}o and S. Jendrov{l}, Total edge irregularity strength of trees, textit{Discussiones Mathematicae Graph Theory}, textbf{26} 449-456 (2006)
  13. S. Jendrov{l}, J. Misv{s}uf and R. Sot'{a}k, Total edge irregularity strength of complete
  14. graphs and complete bipartite graphs, textit{Elec. Notes Discrete Math.}, textbf{28} 281-285 (2007)
  15. P. Jeyanthi and S. Philo, Odd harmonious labeling of some new families of graphs, textit{Electronic Notes in Discrete Mathematics}, textbf{48} 165-168 (2015)
  16. P. Jeyanthi and K.J. Daisy, $Z_{k}$-Magic labeling of open star of graphs, textit{Bulletin of The International Mathematical Virtual Institute}, textbf{7} 243-255 (2017)
  17. S.P. Lo, On edge graceful labelings of graphs, textit{Congr. Numer.} textbf{50} 231-241 (1985)
  18. R.W. Putra and Y. Susanti, On total edge irregularity strength of centralized uniform theta graphs, textit{AKCE International Journal of Graphs and Combinatorics}, textbf{15}(1) 7-13 (2018). %(2018)
  19. R.W. Putra, R.W. and Y. Susanti, The total edge irregularity strength of uniform theta graphs, textit{Journal of Physics: Conference Series}, textit{1097} (2018) 012069
  20. L. Ratnasari and Y. Susanti, Total edge irregularity strength of ladder related graphs, emph{Asian-European Journal of Mathematics}, doi: 10.1142/S1793557120500722
  21. L. Ratnasari, S. Wahyuni, Y. Susanti, D. Junia Eksi Palupi and B. Surodjo, Total edge irregularity strength of arithmetic book graphs, emph{Journal of Physics: Conference Series} textbf{1306}(1), (2019) 012032
  22. A. Solairaju and K. Chithra, Edge-odd graceful graphs, textit{Electronic Notes in Discrete Mathematics}, textbf{33} 15-20 (2009)
  23. Y. Susanti, I. Ernanto, B. Surodjo, On Some New Edge Odd Graceful Graphs, AIP Conference Proceedings, 2019, 2192, 040016
  24. W.D. Wallis, textit{Magic graphs}, (2001) Springer, New York

Last update:

No citation recorded.

Last update:

No citation recorded.