skip to main content

Spatial Risk Model for Mapping Tuberculosis (TB) Hotspot Areas in West Lombok Regency

*Mega Sara Yulianti  -  Faculty of Public Health , Nahdlatul Ulama University of West Nusa Tenggara (NTB), Jln. Pendidikan No. 6, Mataram City, West Nusa Tenggara, Indonesia, Indonesia
Muhamad Sadli  -  Faculty of Public Health , Nahdlatul Ulama University of West Nusa Tenggara (NTB), Jln. Pendidikan No. 6, Mataram City, West Nusa Tenggara, Indonesia, Indonesia
Muhammad Syukri  -  Faculty of Public Health , Nahdlatul Ulama University of West Nusa Tenggara (NTB), Jln. Pendidikan No. 6, Mataram City, West Nusa Tenggara, Indonesia, Indonesia
Warni Farida  -  Faculty of Public Health, Jambi University, Jl. Letjend Soeprapto No. 33, Telanaipura, Jambi 36122, Indonesia, Indonesia
Lia Apriani  -  Student, Nahdlatul Ulama University of West Nusa Tenggara (NTB), Jln. Pendidikan No. 6, Mataram City, West Nusa Tenggara 83125, Indonesia, Indonesia
Received: 20 Nov 2025; Revised: 23 Dec 2025; Accepted: 17 Feb 2026; Available online: 20 Feb 2026; Published: 20 Feb 2026.

Citation Format:
Abstract

Background: Tuberculosis (TB) is a global public health problem. Conventional approaches often overlook the spatial components that influence transmission dynamics, highlighting the need for more accurate area-based surveillance. This study aims to identify spatial risk patterns using a geo-targeting approach and map vulnerable areas to support sustainable precision control strategies.

Methods: This study applied a quantitative design integrating spatial ecological analysis with a case–control approach. A total of 1,658 registered TB cases were geocoded and analyzed to detect spatial clustering patterns. Based on hotspot and non-hotspot classifications, a case–control survey involving 226 respondents (113 cases and 113 controls) assessed environmental, socioeconomic, and behavioral determinants. Data were collected through structured interviews, household environmental observations, and secondary health records. Analysis used spatial statistical techniques and multivariable logistic regression.

Result: Significant spatial clustering of TB was identified, with hotspots located in Gerung, Lembar, Kuripan, and Sekotong, West Lombok. Increased TB risk was associated with high household humidity (OR 5.40), low income (OR 5.42), low education level (OR 4.26), and elevated indoor temperature (OR 2.87). Inverse associations were observed for smoking, infrequent health-facility visits, and male sex, likely reflecting information bias rather than protective effects.

Conclusion: Integrating spatial hotspot mapping with epidemiological assessment improves identification of TB transmission risk. In West Lombok, hotspot areas were linked to adverse environmental and socioeconomic conditions, supporting geo-targeted TB interventions focusing on housing improvement, socioeconomic support, and education-based risk communication.

Note: This article has supplementary file(s).

Fulltext |  common.other
Spatial Risk Model for Mapping Tuberculosis (TB) Hotspot Areas in West
Subject
Type Other
  Download (982KB)    Indexing metadata
Keywords: Hotspot ; Geo-Targeting ; Spatial Analysis ; Tuberculosis ; Risk Factors
Funding: Ministry of Education, Research, and Technology (Kemendiktisaintek) through the Beginner Lecturer Research Grant (PDP) scheme, under grant number 2166/LL8/AL.04/2025.

Article Metrics:

  1. Rosady DS, Zulfa NRA, Pratama SB. Epidemiologic Spatial Analysis of a Tuberculosis Incidence in Bandung City in 2021. Glob Med Heal Commun. 2024;12(1):31–6
  2. Meutya Zahra Eriansyah, Anggraeni Dian Ciptaningrum, Afifah Thaliah Putri Priyono, Almeria Annisa Putri, Riswandy Wasir. Evaluation of Tuberculosis Control Strategy and Challenges in Indonesia After Pandemic COVID-19. Int J Heal Sci. 2025;5(2):28–37
  3. World Health Organization. Global Tuberculosis Report 2022 [Internet]. Geneva; 2022. Available from: https://www.who.int/publications/i/item/9789240061729
  4. Helmy H, Kamaluddin MT, Iskandar I, Suheryanto. Investigating Spatial Patterns of Pulmonary Tuberculosis and Main Related Factors in Bandar Lampung, Indonesia Using Geographically Weighted Poisson Regression. Trop Med Infect Dis. 2022;7(9)
  5. Lönnroth K, Jaramillo E, Williams BG, Dye C, Raviglione M. Drivers of tuberculosis epidemics: The role of risk factors and social determinants. Soc Sci & Med. 2009;68(12):2240–6
  6. Kementerian Kesehatan Republik Indonesia. Laporan Tim Kerja Tuberkulosis: Global TB Report 2024 (Laporan Kinerja 2024). Jakarta: Kementerian Kesehatan RI; 2024
  7. Aglen SSS. Issues and Challenges in the Detection of Suspected Tuberculosis Cases in Paal X Public Health Center, Jambi City. Electron J Sci Environ Heal Dis E-SEHAD. 2024;5(2)
  8. Arulmohi M, Vinayagamoorthy V, R. DA. Physical Violence Against Doctors: A Content Analysis from Online Indian Newspapers. Indian J Community Med. 2017;42(1):147–50
  9. Fahdhienie F, Mudatsir M, Abidin TF, Nurjannah N. Risk factors of pulmonary tuberculosis in Indonesia: A case-control study in a high disease prevalence region. Narra J. 2024;4(2)
  10. Lestari H. Review article Analysis of Tuberculosis Risk Factors and Prevention Efforts in Coastal Areas of Indonesia : 2025;2(1):101–11
  11. Ribeiro FKC, Pan W, Bertolde A, Vinhas SA, Peres RL, Riley L, et al. Genotypic and spatial analysis of mycobacterium tuberculosis transmission in a high-incidence urban setting. Clin Infect Dis. 2015;61(5):758–66
  12. Khodijah S, Prabawa A. Spatial Analysis of Risk Factors for Tuberculosis Incidence in South Jakarta City in 2022. Media Publ Promosi Kesehat Indones. 2024;7(6):1518–24
  13. Setiyowati E, Khamidah K, Khamariyah N, Setianto B, Hatmanti NM, Bistara DN, et al. Environmental factors determine the occurrence of pulmonary tuberculosis. 1856;7642
  14. Dinas Kesehatan Kabupaten Lombok Barat. Profil Kesehatan Kabupaten Lombok Barat Tahun 2024 [Internet]. 2024. Available from: https://ppid.lombokbaratkab.go.id/fileppid/Profil_Dikes_Lombok_Barat_2024.pdf
  15. Elliott P, Wartenberg D. Spatial epidemiology: Current approaches and future challenges. Environ Health Perspect. 2004;112(9):998–1006
  16. Cudahy PGT, Andrews JR, Bilinski A, Dowdy DW, Mathema B, Menzies NA, et al. Spatially targeted screening to reduce tuberculosis transmission in high-incidence settings. Lancet Infect Dis. 2019;19(3):e89–95
  17. Shaweno D, Karmakar M, Alene KA, Ragonnet R, Clements ACA, Trauer JM, et al. Geospatial clustering and modelling provide policy guidance for tuberculosis control. Sci Rep [Internet]. 2021;11(1):12345. Available from: https://www.nature.com/articles/s41598-021-91250-0
  18. Teibo TKA, Andrade RL de P, Rosa RJ, Tavares RBV, Berra TZ, Arcêncio RA. Geo-spatial high-risk clusters of Tuberculosis in the global general population: a systematic review. BMC Public Health [Internet]. 2023;23(1):1–10. Available from: https://doi.org/10.1186/s12889-023-16493-y
  19. World Health Organization. Global Tuberculosis Report 2023 [Internet]. Geneva; 2023 Nov. Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023
  20. Avenda SM, Anggraini R. Analisis Spasial Kasus Tuberkulosis (TB) di Kabupaten Lampung Barat Tahun 2023. An-Nadaa J Kesehat Masy. 2024;11(2):122
  21. Sari IK, Setyowati M. Pemetaan Persebaran Pasien Kasus Tuberkulosis Paru Kota. Detect J Inov Ris Ilmu Kesehat. 2024;(3):65–78
  22. Lönnroth K, Jaramillo E, Williams BG, Dye C, Raviglione M. Tobacco and tuberculosis: a qualitative systematic review and meta-analysis. Int J Tuberc Lung Dis [Internet]. 2010;14(10):1269–81. Available from: https://www.ingentaconnect.com/content/iuatld/ijtld/2010/00000014/00000010/art00001
  23. Indah Kartika Sari, Maryani Setyowati. Pemetaan Persebaran Pasien Kasus Tuberkulosis Paru Kota Semarang Tahun 2021 Di RSUD Dr. Adhyatma, MPH. Detect J Inov Ris Ilmu Kesehat. 2024;2(3):65–78
  24. Bates MN, Khalakdina A, Pai M, Chang L, Lessa F, Smith KR. Risk factors for tuberculosis in older adults: a systematic review and meta-analysis. Clin Infect Dis [Internet]. 2013;57(10):1431–43. Available from: https://academic.oup.com/cid/article/57/10/1431/289557
  25. Tuntun M, Aminah S, Yusrizal CH. Distribution pattern and spatial analysis of factors for tuberculosis (TB) cases in Bandar Lampung City in 2022. Bali Med J. 2023;12(1):50–8
  26. Ilmu J, Bhakti K, Medika S, Sulistyo A, Nariswaria NH, Rohman H. Pemetaan Penyakit Tuberkulosis Dengan Sistem Informasi Geografis Di Wilayah Bantul Mapping of TuberkulosisDisease with Geographic Information System in Bantul Region. J Ilmu Kesehat Bhakti Setya Med. 2022;7(tuberkulosis):26–37
  27. Nidoi J, Muttamba W, Walusimbi S, Imoko JF, Lochoro P, Ictho J, et al. Impact of socio-economic factors on Tuberculosis treatment outcomes in north-eastern Uganda: a mixed methods study. BMC Public Health. 2021;21(1):1–16
  28. Organization WH. WHO consolidated guidelines on tuberculosis. Module 4: Treatment [Internet]. Geneva: World Health Organization; 2022. Available from:
  29. https://www.who.int/publications/i/item/9789240063129
  30. Xu M, Li Y, Liu B, Chen R, Sheng L, Yan S, et al. Temperature and humidity associated with increases in tuberculosis notifications: a time-series study in Hong Kong. Epidemiol Infect. 2020;149:e8
  31. Carter DJ, Glaziou P, Lönnroth K, Siroka A, Floyd K, Weil D. The impact of social protection and poverty elimination on global tuberculosis incidence: A statistical modelling analysis. Lancet Glob Heal. 2018;6(5):e514--e522
  32. Djibuti M, Mirvelashvili E, Makharashvili N, Magee MJ. Household income and poor treatment outcome among patients with tuberculosis in Georgia: A cohort study. BMC Public Health. 2014;14(1):1–7
  33. Oren E, Koepsell T, Leroux BG, Mayer J. Area-based socio-economic disadvantage and tuberculosis incidence. Int J Tuberc Lung Dis. 2012;16(7):880–5
  34. Lutge E, Lewin S, Volmink J. Economic support to improve tuberculosis treatment outcomes in South Africa: A qualitative process evaluation of a cluster randomized controlled trial. Trials. 2014;15(1):1–12
  35. Shenoi S V., Kyriakides TC, Dokubo EK, Guddera V, Vranken P, Desai M, et al. Community-based referral for tuberculosis preventive therapy is effective for treatment completion. PLOS Glob Public Heal [Internet]. 2022;2(12):1–13. Available from: http://dx.doi.org/10.1371/journal.pgph.0001269
  36. World Health Organization. Global Tuberculosis Report 2024. Geneva, Switzerland; 2024
  37. Feldman C, Theron AJ, Cholo MC, Anderson R. Cigarette Smoking as a Risk Factor for Tuberculosis in Adults: Epidemiology and Aspects of Disease Pathogenesis. Pathogens. 2024;13(2):1–16
  38. Skouvig Pedersen O, Butova T, Miasoiedov V, Feshchenko Y, Kuzhko M, Niemann S, et al. Sex differences in risk factors for unsuccessful tuberculosis treatment outcomes in Eastern Europe from 2020 to 2022: a multi-country retrospective cohort study. Lancet Reg Heal - Eur [Internet]. 2025;55:101354. Available from: https://doi.org/10.1016/j.lanepe.2025.101354
  39. Mhalu G, Weiss MG, Hella J, Mhimbira F, Mahongo E, Schindler C, et al. Explaining patient delay in healthcare seeking and loss to diagnostic follow-up among patients with presumptive tuberculosis in Tanzania: a mixed-methods study. BMC Health Serv Res. 2019;19(1):1–15
  40. Kussainova A, Kassym L, Kussainov A, Orazalina A, Smail Y, Derbissalina G, et al. Impact of Social Determinants of Health on the Incidence of Tuberculosis in Central Asia. 2026;1–15

Last update:

No citation recorded.

Last update:

No citation recorded.