skip to main content

Potensi Kombinasi Adenosine Diphosphate-Ribosylation Like 4c Antisense Oligonuclotide-1316 dengan Polyamidoamine Dendrimer Generasi 4-Anti Surfactant Protein B sebagai Terapi Adenokarsinoma Paru

*Adrian Wiryanata Gorintha  -  Universitas Udayana, Indonesia
Andrea Ivena  -  Universitas Udayana, Indonesia
Putu Aprilyanti Aristadewi  -  Universitas Udayana, Indonesia
Agung Wiwiek Indrayani  -  Universitas Udayana, Indonesia

Citation Format:

Background: Lung cancer is a disease of the respiratory system that gets special attention because the World Health Organization (WHO) has reported that in 2018, lung cancer was the cancer with the highest number of morbidity and mortality rate in the world. There are several types of lung cancer, one of which is adenocarcinoma, which accounts for about 40% of all lung cancers. In its management, cancer cells often develop resistance to EGFR TKI drugs while Cisplatin and Crizotinib have quite dangerous side effects, namely bradycardia to cardiotoxicity.

Methods: The method used is a literature review with literature sources in the form of relevant article from search engine such as Pubmed and Google Scholar that contain keyword “ARL4C ASO-1316”, “lung adenocarcinoma”, “PAMAM Dendrimer Generasi 4” and “anti SFTPB antibody”.

Result: The ability of ARL4C ASO-1316 in inhibiting the division and migration of lung adenocarcinoma cells has been proven in vivo and in vitro so that it can provide hope in the form of new modalities in the treatment of lung adenocarcinoma. In addition, the combination with the PAMAM Dendrimer G4-Anti SFTPB carrier can increase the ability to deliver ARL4C ASO-1316 to reach target tissues rapidly and can provide maximum effect in the treatment of lung adenocarcinoma.

Conclusion : Adenosine diphosphate-ribosylation like 4c antisense oligonuclotide-1316 with polyamidoamine dendrimer generation 4-anti surfactant protein b should provide novel approaches and new insights for lung adenocarcinoma.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Type Research Instrument
  Download (3MB)    Indexing metadata
Keywords: ARL4C ASO-1316; Lung adenocarcinoma; PAMAM dendrimer G4-anti SFTPB antibody

Article Metrics:

  1. European Respiratory Society. 2017. The Global Impact of Respiratory Disease- Second Edition. Forum of International Respiratory Societies ; 5–42 p. Available from:
  2. World Health Organization. 2020. Cancer. [Internet]. [cited 15 September 2020] Available from :
  3. World Health Organization. 2019. Indonesia Source GLOBOCAN 2018. Int Agency Res Cancer [Internet]; 256:1–2. Available from:
  4. Hin HS. 2013. Dealing with lung cancer complication : How aggresice can we be ?. Malysian Thoracic Society ;1-23
  5. Kementerian Kesehatan RI. 2018. Pedoman Pengendalian Risiko Kanker Paru ;1–13
  6. Komite Penanggulangan Kanker Nasional. 2017. Panduan Penatalaksanaan Kanker Paru ; 1-10
  7. American Cancer Society. 2019. What is Lung Cancer ? [Internet]. [cited 15 September 2020]. Available from : cancer/ lung-cancer /about /what-is.html
  8. Myers, David J; Wallen, Jason M. 2020. Cancer, Lung Adenocarcinome [Internet]. NCBI. [cited 15 September 2020]. Available from : https:// books/ NBK519578
  9. Cruz, Charles S. Dela; Tanoue, Lynn T ; Matthay RA. 2013. Lung Cancer : Epidemiology, Etiology and Prevention. 32(4):11
  10. Zamay TN, Zamay GS, Kolovskaya OS, Zukov RA, Petrova MM, Gargaun A, et al. 2017. Current and prospective protein biomarkers of lung cancer. Cancers (Basel). 9(11):1–22
  11. Kimura K, Matsumoto S, Harada T, Morii E, Nagatomo I, Shintani Y, et al. 2020. ARL4C is associated with initiation and progression of lung adenokarsinoma and represents a therapeutic target. Cancer Sci.111(3):951–61
  12. Amararathna M, Goralski K, Hoskin D, Rupasinghe HP. 2019. Pulmonary Nano-Drug Delivery Systems for Lung Cancer: Current Knowledge and Prospects. J Lung Heal Dis. 3(2):11–28
  13. Sun Y, Zhang Z, Xiang F, Zhang M, Chen Q, Tang L, et al. 2020. Decreasing Arl4c expression by inhibition of AKT signal in human lung adenokarsinoma cells. Life Sci [Internet]; 246 (February):117428. Available from: 10.1016/ j.lfs.2020.117428
  14. Fujii S, Matsumoto S, Nojima S, Morii, E, Kikuchi A. 2015. Arl4c expression in colorectal and lung cancers promotes tumorigenesis and may represent a novel therapeutic target. Oncogene. 34, 4834–4844
  15. Matsumoto S, Fujii S, Sato A, Ibuka S, Kagawa Y, Ishii M, et al. 2014. A combination of Wnt and growth factor signaling induces Arl4c expression to form epithelial tubular structures. EMBO J.33(7):702–18
  16. Uehara T, Choong C, Nakamori M. et al. 2019. Amido-bridged nucleic acid (AmNA)-modified antisense oligonucleotides targeting α-synuclein as a novel therapy for Parkinson’s disease. Sci Rep 9, 7567. Available from: 10.1038/s41598-019-43772-9
  17. Yamamoto T, Yahara A, Waki R, Yasuhara H, Wada F, Harada-Shiba M, Obika S. 2015. Amido-bridged nucleic acids with small hydrophobic residues enhance hepatic tropism of antisense oligonucleotides in vivo. Organic & Biomolecular Chemistry. 13(12), 3757–3765
  18. Kesharwani P, Iyer AK. 2015. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov Today. 20(5):536–47. Available from: 10.1016/ j.drudis.2014.12. 012
  19. Sandoval-Yañez C, Rodriguez CC. 2020. Dendrimers: Amazing platforms for bioactive molecule delivery systems. Materials (Basel). 13(3):1–20
  20. Nguyen H, Nguyen NH, Tran NQ, Nguyen CK. 2015. Improved method for preparing cisplatin-dendrimer nanocomplex and its behavior against NCI-H460 lung cancer cell. J Nanosci Nanotechnol. 15(6):4106–10
  21. Sin D, Tammemagi CM, Lam S, Barnett MJ, Duan X, Tam A, et al. 2013. Pro-surfactant protein B as a biomarker for lung cancer prediction. J Clin Oncol. 31(36): 4536–43
  22. He Y, Jiang Z, Tong F, Li M, Yin X, Hu S, et al. 2017. Experimental study of peripheral-blood pro-surfactant protein B for screening non-small cell lung cancer. Acta Cir Bras. 32(7):568–75
  23. The Human Protein Atlas. 2019. SFTPB [Internet]. [Cited 15 September 2020]. Available from : ENSG 00000 168878-SFTPB/pathology
  24. Amreddy N, Babu A, Panneerselvam J, Srivastava A, Muralidharan R, Chen A, et al. 2018. Chemo-biologic combinatorial drug delivery using folate receptor-targeted dendrimer nanoparticles for lung cancer treatment. Nanomedicine Nanotechnology, Biol Med. 14(2):373–84. Available from:
  25. Yahara A, Shrestha AR, Yamamoto T, Hari Y, Osawa T, Yamaguchi M, et al. 2012. Amido-Bridged Nucleic Acids (AmNAs): Synthesis, Duplex Stability, Nuclease Resistance, and in Vitro Antisense Potency. ChemBioChem. 13(17):2513–6
  26. Peterson J, Ebber A, Allikmaa V, Lopp M. 2010. Synthesis And Cze Analysis Of Pamam Dendrimers With an Ethylenediamine Core. Proceedings of the Estonian Academy of Sciences, Chemistry.50(3):156-166
  27. Ziemba B, Matuszko G, Bryszewska M, Klajnert B. 2012. Influence of dendrimers on red blood cells. Cellular and Molecular Biology Letters. 17(1)
  28. Nourazarian A, Najar A, Farajnia S, Khosroushahi A, Pashaei-Asl R, Omidi Y. 2012. Combined EGFR and c-Src Antisense Oligodeoxynucleotides Encapsulated with PAMAM Denderimers Inhibit HT-29 Colon Cancer Cell Proliferation. Asian Pacific Journal of Cancer Prevention. 13(9):4751-4756
  29. Mallory A. Havens, Michelle L. Hastings. Spliceswitching antisense oligonucleotides as therapeutic drugs, Nucleic Acids Research, Volume 44, Issue 14, 19 August 2016, Pages 6549–6563. Available from:, P. 2007. Modeling and Simulation Design. AK Peters Ltd., Natick, MA

Last update:

No citation recorded.

Last update:

No citation recorded.