skip to main content

Analisa Performa Penggunaan Airfoil S809 pada Bilah Turbin Angin Poros Horizontal

Institut Teknologi Lombok, Indonesia

Open Access Copyright (c) 2026 Jurnal Energi Baru dan Terbarukan
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This study analyzes the aerodynamic effects of using the S809 airfoil on the blades of a horizontal-axis wind turbine type AWT-27. The S809 airfoil is specifically designed for low-speed applications, making it aerodynamically suitable for optimizing wind turbine performance in regions with moderate to low wind speeds. Simulations were conducted using Blade Element Momentum (BEM) Theory-based software to evaluate power and power coefficient at various wind speeds. The results indicate that AWT-27 blades with the S809 airfoil deliver better aerodynamic performance at low wind speeds, ranging from 5 m/s to 8 m/s. However, at higher wind speeds, between 9 m/s and 25 m/s, the aerodynamic performance tends to decrease. Therefore, AWT-27 blades with the S809 airfoil profile can serve as an effective alternative for enhancing the performance of horizontal-axis wind turbines, particularly in regions with low wind speeds.

Keywords : Aerodynamic, S809 Airfoil, Power


Fulltext View|Download
Keywords: Aerodynamic, S809 Airfoil, Power

Article Metrics:

  1. Anonim. (n.d.). NREL's S809 Airfoil (s809-nr). Retrieved Januari 1, 2025, from http://airfoiltools.com/airfoil/details?airfoil=s809-nr
  2. Badan Pusat Statistik Kabupaten Lombok Timur. (2024, Maret 28). Pengamatan Kecepatan Angin Menurut Bulan di Stasiun Meterologi Zainuddin Abdul Majid (knot), 2022-2023. (Badan Meteorologi, Klimatologi, dan Geofisika) Retrieved Januari 5, 2025, from https://lomboktimurkab.bps.go.id/id/statistics-table/2/MjU3IzI=/pengamatan-kecepatan-angin-menurut-bulan-di-stasiun-meterologi-zainuddin-abdul-majid-.html
  3. Belamadi, R., Djemili, A., Ilinca, A., & Mdouki, R. (2016). Aerodynamic Performance Analysis of Slotted Airfoils for Application to Wind Turbine Blades. Journal of Wind Engineering and Industrial Aerodynamics, 151, 79-99. doi: https://doi.org/10.1016/j.jweia.2016.01.011
  4. Boatto, U., Bonnet, P. A., Avallone, F., & Ragni, D. (2023). Assessment of Blade Element Momentum Theory-based engineering models for wind turbine rotors under uniform steady inflow. Renewable Energy, 214, 307-317. doi: https://doi.org/10.1016/j.renene.2023.04.050
  5. Burton, T., Sharpe, D., Jenkins, N., & Bossanyi, E. (2011). Wind Energy Handbook. Chichester, United Kingdom: Wiley
  6. Danish Energy Agency, Ea Energy Analyses, & Dinas ESDM Provinsi NTB. (2023). NTB Energy Masterplan. Mataram: Dinas ESDM Provinsi NTB
  7. Dewan Energi Nasional. (2023). Outlook Energi Indonesia Tahun 2023. Jakarta: Sekretariat Jenderal Dewan Energi Nasional
  8. Hansen, M. O. (2015). Aerodynamics of Wind Turbines Third edition. Chichester, United Kingdom: Earthscan
  9. Harianto, B., & Karjadi, M. (2024). Pengembangan Turbin Angin Skala Kecil untuk Energi Terbarukan untuk Daerah Terpencil. Ranah Research : Journal of Multidisciplinary Research and Development, 7, 468-476. doi: https://doi.org/10.38035/rrj.v7i1
  10. Ledoux, J., Riffo, S., & Salomon, J. (2021). Analysis of the Blade Element Momentum Theory. SIAM Journal on Applied Mathematics, 81, 2596-2621. Retrieved from https://hal.science/hal-02550763v2
  11. Manwell, J. F., Mcgowan, J. G., & Rogers, A. L. (2009). Wind Energy Explained: Theory, Design, and Application. Chichester, United Kingdom: Wiley
  12. Samosir, R., Turnip, K., & Sebo, B. P. (2022). Simulasi Turbin Angin dengan Beberapa Tipe Airfoil Menggunakan Software Qblade. Jurnal Teknik Mesin, 11, 72-77
  13. Sapto, A. D., & Rumakso, H. P. (2021). Uji Coba Performa Bentuk Airfoil Menggunakan Software QBlade terhadap Turbin Angin Tipe Sumbu Horizontal. Jurnal Teknik Mesin, 10, 1-8
  14. Somers, D. M. (1989). Design and Experimental Results for the S809 Airfoil. Golden, Colorado, United States: National Renewable Energy Laboratory
  15. Wiratama, I. K. (2012). Aerodynamic Design of Wind Turbine Blades Utilising Nonconventional Control Systems. Newcastle: University of Northumbria
  16. Wiratama, I. K. (2014). Validation of AWTSim as Aerodynamic Analysis for Design Wind Turbine Blade. Applied Mechanics and Materials, 493, 105-110

Last update:

No citation recorded.

Last update:

No citation recorded.