skip to main content

Produksi Hidrogen Dari Air Laut Menggunakan Metode Elektrolisis Berbantuan Elektrokatalis

Program Studi Pendidikan Kimia, Universitas Maritim Raja Ali Haji, Jalan Raya Dompak, Tanjungpinang, Indonesia, 29124, Indonesia

Open Access Copyright (c) 2024 Jurnal Energi Baru dan Terbarukan
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Hidrogen berpotensi sebagai sumber energi bersih yang ideal untuk menurunkan emisi karbondioksida di masa depan. Hal ini dikarenakan hidrogen memiliki kepadatan energi yang tinggi sekitar 142.351 MJ/kg dan bebas dari gas beracun. Oleh karena itu, diperkirakan permintaan hidrogen akan meningkat sekitar 18% pada tahun 2050 untuk memenuhi kebutuhan energi pengganti bahan bakar fosil. Tujuan penelitian, yakni untuk merangkum reaksi-reaksi redoks pada elektroda dalam metode elektrolisis udara laut, menampilkan berbagai elektrokatalis dalam memproduksi hidrogen dari udara laut, dan elektrolisis sebagai media pendukung berlangsungnya proses produksi hidrogen air laut. Hasil yang ditampilkan adalah adanya 3 reaksi redoks dalam elektrolisis udara laut yang terdiri atas Oxygen Evolution Reaction (OER), Chlorine Evolution Reaction (CER), dan Hydrogen Evolution Reaction (HER). Adapun elektrokatalis yang efisien dalam mendukung reaksi HER sebanyak 25 buah. Selain itu, terdapat 4 elektrolit yang mendukung kinerja dari reaksi elektrolisis udara laut dalam memproduksi hidrogen adalah H 2 SO 4 , NaCl, KOH dan NaOH. Oleh karena itu, pengembangan hidrogen dari air laut secara lebih lanjut patut dikembangkan guna mewujudkan Net Zero Emission.

Fulltext View|Download
Keywords: Hidrogen, Air Laut, Elektrolisis, Elektrokatalis, Elektrolit
Funding: Universitas Maritim Raja Ali Haji

Article Metrics:

  1. Badreldin, A., Nabeeh, A., Ghouri, Z. K., Abed, J., Wang, N., Wubulikasimu, Y., Youssef, K., Kumar, D., Stodolny, M. K., Elsaid, K., Sargent, E. H., & Abdel-Wahab, A. (2021). Early Transition-Metal-Based Binary Oxide/Nitride for Efficient Electrocatalytic Hydrogen Evolution from Saline Water in Different pH Environments. ACS Applied Materials & Interfaces, 13(45), 53702–53716. https://doi.org/10.1021/acsami.1c13002
  2. Chen, I.-W. P., Hsiao, C.-H., Huang, J.-Y., Peng, Y.-H., & Chang, C.-Y. (2019). Highly Efficient Hydrogen Evolution from Seawater by Biofunctionalized Exfoliated MoS 2 Quantum Dot Aerogel Electrocatalysts That Is Superior to Pt. ACS Applied Materials & Interfaces, 11(15), 14159–14165. https://doi.org/10.1021/acsami.9b02582
  3. Dingenen, F., & Verbruggen, S. W. (2021). Tapping hydrogen fuel from the ocean: A review on photocatalytic, photoelectrochemical and electrolytic splitting of seawater. Renewable and Sustainable Energy Reviews, 142, 110866. https://doi.org/10.1016/j.rser.2021.110866
  4. Dinh, C.-T., Jain, A., de Arquer, F. P. G., De Luna, P., Li, J., Wang, N., Zheng, X., Cai, J., Gregory, B. Z., Voznyy, O., Zhang, B., Liu, M., Sinton, D., Crumlin, E. J., & Sargent, E. H. (2018). Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nature Energy, 4(2), 107–114. https://doi.org/10.1038/s41560-018-0296-8
  5. Dresp, S., Dionigi, F., Klingenhof, M., & Strasser, P. (2019). Direct Electrolytic Splitting of Seawater: Opportunities and Challenges. ACS Energy Letters, 4(4), 933–942. https://doi.org/10.1021/acsenergylett.9b00220
  6. Elahi, S., & Seddighi, S. (2024). Renewable energy storage using hydrogen produced from seawater membrane-less electrolysis powered by triboelectric nanogenerators. Journal of Power Sources, 609, 234682. https://doi.org/10.1016/j.jpowsour.2024.234682
  7. Exner, K. S., Lim, T., & Joo, S. H. (2022). Circumventing the OCl versus OOH scaling relation in the chlorine evolution reaction: Beyond dimensionally stable anodes. Current Opinion in Electrochemistry, 34, 100979. https://doi.org/10.1016/j.coelec.2022.100979
  8. Feng, C., Chen, M., Yang, Z., Xie, Z., Li, X., Li, S., Abudula, A., & Guan, G. (2023). Electrocatalytic seawater splitting for hydrogen production: Recent progress and future prospects. Journal of Materials Science & Technology, 162, 203–226. https://doi.org/10.1016/j.jmst.2023.03.058
  9. Ghosh, S. K., & Rahaman, H. (2019). Noble Metal–Manganese Oxide Hybrid Nanocatalysts. In Noble Metal-Metal Oxide Hybrid Nanoparticles (pp. 313–340). Elsevier. https://doi.org/10.1016/B978-0-12-814134-2.00009-7
  10. Guo, M., Deng, R., Wang, C., & Zhang, Q. (2023). Recent progress of advanced manganese oxide-based materials for acidic oxygen evolution reaction: Fundamentals, performance optimization, and prospects. Journal of Energy Chemistry, 78, 537–553. https://doi.org/10.1016/j.jechem.2022.11.054
  11. Hakim, L., Sari, R., Fadli, Fajar, Safrizal, Selvy, & Emma. (2023). Hydrogen production from seawater using H2SO4 catalyst by photovoltaic-electrolysis method. Materials Today: Proceedings, 87, 315–320. https://doi.org/10.1016/j.matpr.2023.03.289
  12. Huang, Y., Hu, L., Liu, R., Hu, Y., Xiong, T., Qiu, W., Balogun, M.-S. (Jie T., Pan, A., & Tong, Y. (2019). Nitrogen treatment generates tunable nanohybridization of Ni5P4 nanosheets with nickel hydr(oxy)oxides for efficient hydrogen production in alkaline, seawater and acidic media. Applied Catalysis B: Environmental, 251, 181–194. https://doi.org/10.1016/j.apcatb.2019.03.037
  13. Iswandari, D., Mahenri, I., Bow, Y., Syakdani, A., & Junaidi, R. (2022). Effect of Concentration of NaOH and H2SO4 Catalysts on Hydrogen Gas Production Efficiency. International Journal of Research in Vocational Studies (IJRVOCAS), 1(4), 22–25. https://doi.org/10.53893/ijrvocas.v1i4.73
  14. Jiang, S., Liu, Y., Qiu, H., Su, C., & Shao, Z. (2022). High Selectivity Electrocatalysts for Oxygen Evolution Reaction and Anti-Chlorine Corrosion Strategies in Seawater Splitting. Catalysts, 12(3), 261. https://doi.org/10.3390/catal12030261
  15. Jin, H., Liu, X., Vasileff, A., Jiao, Y., Zhao, Y., Zheng, Y., & Qiao, S.-Z. (2018). Single-Crystal Nitrogen-Rich Two-Dimensional Mo 5 N 6 Nanosheets for Efficient and Stable Seawater Splitting. ACS Nano, 12(12), 12761–12769. https://doi.org/10.1021/acsnano.8b07841
  16. Jin, H., Wang, J., Su, D., Wei, Z., Pang, Z., & Wang, Y. (2015). In situ Cobalt–Cobalt Oxide/N-Doped Carbon Hybrids As Superior Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution. Journal of the American Chemical Society, 137(7), 2688–2694. https://doi.org/10.1021/ja5127165
  17. Jin, H., Wang, X., Tang, C., Vasileff, A., Li, L., Slattery, A., & Qiao, S. (2021). Stable and Highly Efficient Hydrogen Evolution from Seawater Enabled by an Unsaturated Nickel Surface Nitride. Advanced Materials, 33(13), 2007508. https://doi.org/10.1002/adma.202007508
  18. Kibler, L. A., Hermann, J. M., Abdelrahman, A., El-Aziz, A. A., & Jacob, T. (2018). New insights on hydrogen evolution at Au single crystal electrodes. Current Opinion in Electrochemistry, 9, 265–270. https://doi.org/https://doi.org/10.1016/j.coelec.2018.05.013
  19. Larasati, I., Yusril, A. N., & Zukri, P. Al. (2021). Systematic Literature Review Analisis Metode Agile Dalam Pengembangan Aplikasi Mobile. Sistemasi, 10(2), 369. https://doi.org/10.32520/stmsi.v10i2.1237
  20. Lasia, A. (2019). Mechanism and kinetics of the hydrogen evolution reaction. International Journal of Hydrogen Energy, 44(36), 19484–19518. https://doi.org/10.1016/j.ijhydene.2019.05.183
  21. Li, C., Hong, W., Cai, Q., & Jian, C. (2022). Directional Construction of a 1T 0.63 -MoSe 2 @MoP Multiphase-Interface Catalyst for Highly Efficient Alkaline Hydrogen Evolution. ACS Applied Materials & Interfaces, 14(27), 30683–30691. https://doi.org/10.1021/acsami.2c04093
  22. Lim, T., Kim, J., & Joo, S. H. (2023). Electrocatalysis of Selective Chlorine Evolution Reaction: Fundamental Understanding and Catalyst Design. Journal of Electrochemical Science and Technology, 14(2), 105–119. https://doi.org/10.33961/jecst.2022.01032
  23. Lin, Y., Sun, K., Chen, X., Chen, C., Pan, Y., Li, X., & Zhang, J. (2021). High-precision regulation synthesis of Fe-doped Co2P nanorod bundles as efficient electrocatalysts for hydrogen evolution in all-pH range and seawater. Journal of Energy Chemistry, 55, 92–101. https://doi.org/10.1016/j.jechem.2020.06.073
  24. Liu, Z., Li, H., Yang, C., Jiang, M., Zhang, J., & Fu, C. (2024). High‐Throughput Designed and Laser‐Etched NiFeCrVTi High‐Entropy Alloys with High Catalytic Activities and Corrosion Resistance for Hydrogen Evolution in Seawater. Small, 20(20), 2309078. https://doi.org/10.1002/smll.202309078
  25. Ma, C., Zhong, G., Zhao, Y., Zhang, P., Fu, Y., & Shen, B. (2020). Recent development of synthetic probes for detection of hypochlorous acid/hypochlorite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 240, 118545. https://doi.org/10.1016/j.saa.2020.118545
  26. Ma, Y., Wu, C.-X., Feng, X.-J., Tan, H.-Q., Yan, L.-K., Liu, Y., Kang, Z.-H., Wang, E.-B., & Li, Y.-G. (2017). Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy and Enviromental Science, 10(3), 788–798. https://doi.org/DOI
  27. Mohammed-Ibrahim, J. (2020). A review on NiFe-based electrocatalysts for efficient alkaline oxygen evolution reaction. Journal of Power Sources, 448, 227375. https://doi.org/10.1016/j.jpowsour.2019.227375
  28. Morales-Guio, C. G., Stern, L.-A., & Hu, X. (2014). Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chemical Society Reviews, 43(18), 6555. https://doi.org/10.1039/C3CS60468C
  29. Rong, C., Shen, X., Wang, Y., Thomsen, L., Zhao, T., Li, Y., Lu, X., Amal, R., & Zhao, C. (2022). Electronic Structure Engineering of Single‐Atom Ru Sites via Co–N4 Sites for Bifunctional pH‐Universal Water Splitting. Advanced Materials, 34(21), 2110103. https://doi.org/10.1002/adma.202110103
  30. Rusdianasari, R., Bow, Y., Dewi, T., Taqwa, A., & Prasetyani, L. (2019). Effect of Sodium Chloride Solution Concentration on Hydrogen Gas Production in Water Electrolyzer Prototype. 2019 International Conference on Technologies and Policies in Electric Power & Energy, 1–6. https://doi.org/10.1109/IEEECONF48524.2019.9102508
  31. Safari, F., & Dincer, I. (2020). A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production. Energy Conversion and Management, 205, 112182. https://doi.org/10.1016/j.enconman.2019.112182
  32. Sazali, N. (2020). Emerging technologies by hydrogen: A review. International Journal of Hydrogen Energy, 45(38), 18753–18771. https://doi.org/10.1016/j.ijhydene.2020.05.021
  33. Shedid, M. H., & Elshokary, S. (2015). Hydrogen Production from an Alkali Electrolyzer Operating with Egypt Natural Resources. Smart Grid and Renewable Energy, 06(01), 14–25. https://doi.org/10.4236/sgre.2015.61002
  34. Shi, H., Sun, X., Liu, Y., Zeng, S., Zhang, Q., Gu, L., Wang, T., Han, G., Wen, Z., Fang, Q., Lang, X., & Jiang, Q. (2023). Multicomponent Intermetallic Nanoparticles on Hierarchical Metal Network as Versatile Electrocatalysts for Highly Efficient Water Splitting. Advanced Functional Materials, 33(19), 2214412. https://doi.org/10.1002/adfm.202214412
  35. Tang, X., Arif, I., & Diao, P. (2023). Monitoring the chlorine evolution reaction during electrochemical alkaline seawater splitting. Journal of Electroanalytical Chemistry, 942, 117569. https://doi.org/10.1016/j.jelechem.2023.117569
  36. Wang, G., Xiang, T., Ren, X., Zhang, L., & Chen, C. (2024). Transition metal-based electrocatalysts for hydrogen production from seawater: A review. International Journal of Hydrogen Energy, 73, 775–790. https://doi.org/10.1016/j.ijhydene.2024.05.471
  37. Wang, Q., Liu, X., Zhu, J., & Jiang, H. (2024). Chlorine-oxidation-free dual hydrogen production by seawater electrolysis coupling formaldehyde oxidation. Electrochimica Acta, 496, 144490. https://doi.org/10.1016/j.electacta.2024.144490
  38. Wang, S., Wang, M., Liu, Z., Liu, S., Chen, Y., Li, M., Zhang, H., Wu, Q., Guo, J., Feng, X., Chen, Z., & Pan, Y. (2022). Synergetic Function of the Single-Atom Ru–N 4 Site and Ru Nanoparticles for Hydrogen Production in a Wide pH Range and Seawater Electrolysis. ACS Applied Materials & Interfaces, 14(13), 15250–15258. https://doi.org/10.1021/acsami.2c00652
  39. Wang, Y., Liu, Y., Wiley, D., Zhao, S., & Tang, Z. (2021). Recent advances in electrocatalytic chloride oxidation for chlorine gas production. Journal of Materials Chemistry A, 9(35), 18974–18993. https://doi.org/10.1039/d1ta02745j
  40. Weijin, G., Binbin, L., Qingyu, W., Zuohua, H., & Liang, Z. (2018). Supercritical water gasification of landfill leachate for hydrogen production in the presence and absence of alkali catalyst. Waste Management, 73, 439–446. https://doi.org/10.1016/j.wasman.2017.12.015
  41. Wu, X., Zhou, S., Wang, Z., Liu, J., Pei, W., Yang, P., Zhao, J., & Qiu, J. (2019). Engineering Multifunctional Collaborative Catalytic Interface Enabling Efficient Hydrogen Evolution in All pH Range and Seawater. Advanced Energy Materials, 9(34), 1901333. https://doi.org/10.1002/aenm.201901333
  42. Xin, Y., Shen, K., Guo, T., Chen, L., & Li, Y. (2023). Coupling Hydrazine Oxidation with Seawater Electrolysis for Energy‐Saving Hydrogen Production over Bifunctional CoNC Nanoarray Electrocatalysts. Small, 19(21), 2300019. https://doi.org/10.1002/smll.202300019
  43. Xiu, L., Pei, W., Zhou, S., Wang, Z., Yang, P., Zhao, J., & Qiu, J. (2020). Multilevel Hollow MXene Tailored Low‐Pt Catalyst for Efficient Hydrogen Evolution in Full‐pH Range and Seawater. Advanced Functional Materials, 30(47), 1910028. https://doi.org/10.1002/adfm.201910028
  44. Yang, C., Zhou, L., Yan, T., Bian, Y., Hu, Y., Wang, C., Zhang, Y., Shi, Y., Wang, D., Zhen, Y., & Fu, F. (2022). Synergistic mechanism of Ni(OH)2/NiMoS heterostructure electrocatalyst with crystalline/amorphous interfaces for efficient hydrogen evolution over all pH ranges. Journal of Colloid and Interface Science, 606, 1004–1013. https://doi.org/10.1016/j.jcis.2021.08.090
  45. Yu, H., Yang, X., Xiao, X., Chen, M., Zhang, Q., Huang, L., Wu, J., Li, T., Chen, S., Song, L., Gu, L., Xia, B. Y., Feng, G., Li, J., & Zhou, J. (2018). Atmospheric‐Pressure Synthesis of 2D Nitrogen‐Rich Tungsten Nitride. Advanced Materials, 30(51), 1805655. https://doi.org/10.1002/adma.201805655
  46. Yu, L., Xiao, J., Huang, C., Zhou, J., Qiu, M., Yu, Y., Ren, Z., Chu, C.-W., & Yu, J. C. (2022). High-performance seawater oxidation by a homogeneous multimetallic layered double hydroxide electrocatalyst. Proceedings of the National Academy of Sciences, 119(18). https://doi.org/10.1073/pnas.2202382119
  47. Yu, L., Zhu, Q., Song, S., McElhenny, B., Wang, D., Wu, C., Qin, Z., Bao, J., Yu, Y., Chen, S., & Ren, Z. (2019). Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nature Communications, 10(1), 5106. https://doi.org/10.1038/s41467-019-13092-7
  48. Yu, P., Wang, F., Shifa, T. A., Zhan, X., Lou, X., Xia, F., & He, J. (2019). Earth abundant materials beyond transition metal dichalcogenides: A focus on electrocatalyzing hydrogen evolution reaction. Nano Energy, 58, 244–276. https://doi.org/https://doi.org/10.1016/j.nanoen.2019.01.017
  49. Zang, W., Sun, T., Yang, T., Xi, S., Waqar, M., Kou, Z., Lyu, Z., Feng, Y. P., Wang, J., & Pennycook, S. J. (2021). Efficient Hydrogen Evolution of Oxidized Ni‐N 3 Defective Sites for Alkaline Freshwater and Seawater Electrolysis. Advanced Materials, 33(8), 2003846. https://doi.org/10.1002/adma.202003846
  50. Zhang, B., Zhang, C., Yang, O., Yuan, W., Liu, Y., He, L., Hu, Y., Zhao, Z., Zhou, L., Wang, J., & Wang, Z. L. (2022). Self-Powered Seawater Electrolysis Based on a Triboelectric Nanogenerator for Hydrogen Production. ACS Nano, 16(9), 15286–15296. https://doi.org/10.1021/acsnano.2c06701
  51. Zhang, F., Yu, L., Wu, L., Luo, D., & Ren, Z. (2021). Rational design of oxygen evolution reaction catalysts for seawater electrolysis. Trends in Chemistry, 3(6), P485-498. https://doi.org/https://doi.org/10.1016/j.trechm.2021.03.003
  52. Zhang, H., Diao, J., Ouyang, M., Yadegari, H., Mao, M., Wang, M., Henkelman, G., Xie, F., & Riley, D. J. (2023). Heterostructured Core–Shell Ni–Co@Fe–Co Nanoboxes of Prussian Blue Analogues for Efficient Electrocatalytic Hydrogen Evolution from Alkaline Seawater. ACS Catalysis, 13(2), 1349–1358. https://doi.org/10.1021/acscatal.2c05433
  53. Zhang, H., Zhang, X., & Ding, L. (2020). Partial oxidation of phenol in supercritical water with NaOH and H2O2: Hydrogen production and polymer formation. Science of The Total Environment, 722, 137985. https://doi.org/10.1016/j.scitotenv.2020.137985
  54. Zhang, J., Zhao, Y., Guo, X., Chen, C., Dong, C.-L., Liu, R.-S., Han, C.-P., Li, Y., Gogotsi, Y., & Wang, G. (2018). Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nature Catalysis, 1(12), 985–992. https://doi.org/10.1038/s41929-018-0195-1
  55. Zhang, Y., Zheng, W., Wu, H., Zhu, R., Wang, Y., Wang, M., Ma, T., Cheng, C., Zeng, Z., & Li, S. (2024). Tungsten oxide‐anchored Ru clusters with electron‐rich and anti‐corrosive microenvironments for efficient and robust seawater splitting. SusMat, 4(1), 106–115. https://doi.org/10.1002/sus2.164
  56. Zhao, Y., Tang, Q., He, B., & Yang, P. (2016). Carbide decorated carbon nanotube electrocatalyst for high-efficiency hydrogen evolution from seawater. RSC Advances, 6(96), 93267–93274. https://doi.org/10.1039/C6RA17839A
  57. Zheng, J. (2017). Seawater splitting for high-efficiency hydrogen evolution by alloyed PtNi x electrocatalysts. Applied Surface Science, 413, 360–365. https://doi.org/10.1016/j.apsusc.2017.03.285
  58. Zou, H., Li, G., Duan, L., Kou, Z., & Wang, J. (2019). In situ coupled amorphous cobalt nitride with nitrogen-doped graphene aerogel as a trifunctional electrocatalyst towards Zn-air battery deriven full water splitting. Applied Catalysis B: Environmental, 259, 118100. https://doi.org/10.1016/j.apcatb.2019.118100

Last update:

No citation recorded.

Last update:

No citation recorded.