skip to main content

Tren Algoritma InC, PID dan FLC untuk MPPT Pada Sistem Fotovoltaik: Sistematik Review

Departemen Teknik Elektro, Fakultas Teknik, Universitas Negeri Semarang, Kampus Sekaran Gunungpati Semarang, Kode Pos 50229., Indonesia

Open Access Copyright (c) 2024 Jurnal Energi Baru dan Terbarukan
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Terkadang ekstraksi daya pada penggunaan sistem fotovoltaik (PV) kurang maksimal, perubahan radiasi matahari dan temperatur lingkungan menjadi salah satu penyebabnya. MPPT adalah metode untuk memaksimalkan ekstraksi daya dari PV. Beberapa penggunaan algoritma kontrol untuk MPPT pada sistem PV diusulkan. Tujuan penelitian ini adalah untuk mengetahui seberapa efisien metode algoritma yang digunakan untuk MPPT. Kelebihan dari algoritma yang diusulkan juga dibahas. Penelitian ini melakukan tinjauan dari 15 artikel yang diambil dari sumber database Scopus dengan rentang tahun 2020 hingga 2024. Hasilnya menunjukkan bahwa kontroler berbasis PID paling banyak digunakan untuk MPPT. Penggunaan metode kombinasi hingga integrasi Neural Network (NN) menghasilkan nilai efisiensi yang tinggi dibandingkan dengan metode konvensional, tetapi memerlukan komputasi dan resource yang banyak. Systematic Literature Review (SLR) ini bisa menjadi pedoman untuk peneliti dalam mengembangkan algoritma untuk MPPT pada sistem PV di masa mendatang.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Materials
Metada Via Scopus Databases
Subject
Type Research Materials
  View (300KB)    Indexing metadata
Keywords: Fotovoltaik,;MPPT; PID; InC; Fuzzy Controller; systematic literature review

Article Metrics:

  1. Abouobaida, H., Mchaouar, Y., Abouelmahjoub, Y., Mahmoudi, H., Abbou, A., & Jamil, M. (2023). Performance optimization of the INC-COND fuzzy MPPT based on a variable step for photovoltaic systems. Optik, 278. https://doi.org/10.1016/j.ijleo.2023.170657
  2. Ahmadi, M. H., Baghban, A., Sadeghzadeh, M., Zamen, M., Mosavi, A., Shamshirband, S., Kumar, R., & Mohammadi-Khanaposhtani, M. (2020). Evaluation of electrical efficiency of photovoltaic thermal solar collector. Engineering Applications of Computational Fluid Mechanics, 14(1), 545–565. https://doi.org/10.1080/19942060.2020.1734094
  3. Aly, M., Mohamed, E. A., Rezk, H., Nassef, A. M., Elhosseini, M. A., & Shawky, A. (2023). An Improved Optimally Designed Fuzzy Logic-Based MPPT Method for Maximizing Energy Extraction of PEMFC in Green Buildings. Energies, 16(3). https://doi.org/10.3390/en16031197
  4. Bouksaim, M., Mekhfioui, M., & Srifi, M. N. (2021). Design and implementation of modified inc, conventional inc, and fuzzy logic controllers applied to a pv system under variable weather conditions. Designs, 5(4). https://doi.org/10.3390/designs5040071
  5. Chauhan, U., Chhabra, H., Rani, A., Kumar, B., & Singh, V. (2023). Efficient MPPT Controller for Solar PV System Using GWO-CS Optimized Fuzzy Logic Control and Conventional Incremental Conductance Technique. Iranian Journal of Science and Technology - Transactions of Electrical Engineering, 47(2), 463–472. https://doi.org/10.1007/s40998-022-00569-3
  6. Didi, F., & Chaouche, M. S. (2022). DESIGN AND SIMULATION OF GRID-CONNECTED PHOTOVOLTAIC SYSTEM’S PERFORMANCE ANALYSIS WITH OPTIMAL CONTROL OF MAXIMUM POWER POINT TRACKING BASED ON ARTIFICIAL INTELLIGENCE. Review of Computer Engineering Research, 9(3), 151–168. https://doi.org/10.18488/76.v9i3.3144
  7. Eydi, M., Hosseini Sabzevari, S. I., & Ghazi, R. (2020). A novel strategy of maximum power point tracking for photovoltaic panels based on fuzzy logic algorithm. Advances in Electrical and Electronic Engineering, 18(1), 1–10. https://doi.org/10.15598/aeee.v18i1.3511
  8. Hichem, L., Amar, O., & Leila, M. (2023). Optimized ANN-fuzzy MPPT controller for a stand-alone PV system under fast-changing atmospheric conditions. Bulletin of Electrical Engineering and Informatics, 12(4), 1960–1981. https://doi.org/10.11591/eei.v12i4.5099
  9. Hou, T., & Wang, S. (2023). Research on the MPPT of Photovoltaic Power Generation Based on the CSA-INC Algorithm. Energy Engineering: Journal of the Association of Energy Engineering, 120(1), 87–106. https://doi.org/10.32604/ee.2022.022122
  10. Kacimi, N., Idir, A., Grouni, S., & Boucherit, M. S. (2023). Improved MPPT Control Strategy for PV Connected to Grid Using IncCond-PSO-MPC Approach. CSEE Journal of Power and Energy Systems, 9(3), 1008–1020. https://doi.org/10.17775/CSEEJPES.2021.08810
  11. Kanagaraj, N., & Al-Ansi, M. (2023). Maximum Power Extraction Control Algorithm for Hybrid Renewable Energy System. Computer Systems Science and Engineering, 45(1), 769–784. https://doi.org/10.32604/csse.2023.029457
  12. Kaya, E., Baştemur Kaya, C., Bendeş, E., Atasever, S., Öztürk, B., & Yazlık, B. (2023). Training of Feed-Forward Neural Networks by Using Optimization Algorithms Based on Swarm-Intelligent for Maximum Power Point Tracking. Biomimetics, 8(5). https://doi.org/10.3390/biomimetics8050402
  13. Khatibi, A., Razi Astaraei, F., & Ahmadi, M. H. (2019). Generation and combination of the solar cells: A current model review. In Energy Science and Engineering (Vol. 7, Issue 2, pp. 305–322). John Wiley and Sons Ltd. https://doi.org/10.1002/ese3.292
  14. Murugaperumal, K., Srinivasn, S., & Satya Prasad, G. R. K. D. (2020). Optimum design of hybrid renewable energy system through load forecasting and different operating strategies for rural electrification. Sustainable Energy Technologies and Assessments, 37. https://doi.org/10.1016/j.seta.2019.100613
  15. Napole, C., Derbeli, M., & Barambones, O. (2021). Fuzzy logic approach for maximum power point tracking implemented in a real time photovoltaic system. Applied Sciences (Switzerland), 11(13). https://doi.org/10.3390/app11135927
  16. Nasir, A., Rasool, I., Sibtain, D., & Kamran, R. (2021). Adaptive Fractional Order PID Controller Based MPPT for PV Connected Grid System Under Changing Weather Conditions. Journal of Electrical Engineering and Technology, 16(5), 2599–2610. https://doi.org/10.1007/s42835-021-00782-w
  17. Ngo, Q. V., & Nguyen, T. T. (2021). The mppt algorithm combined with pitch angle control for the small-scale wind turbine in a wide speed range. International Journal of Power Electronics and Drive Systems, 12(3), 1482–1493. https://doi.org/10.11591/ijpeds.v12.i3.pp1482-1493
  18. Pathak, D., Sagar, G., & Gaur, P. (2020). An Application of Intelligent Non-linear Discrete-PID Controller for MPPT of PV System. Procedia Computer Science, 167, 1574–1583. https://doi.org/10.1016/j.procs.2020.03.368
  19. Rajput, P., Malvoni, M., Kumar, N. M., Sastry, O. S., & Jayakumar, A. (2020). Operational performance and degradation influenced life cycle environmental-economic metrics of mc-si, a-si and hit photovoltaic arrays in hot semi-arid climates. Sustainability (Switzerland), 12(3). https://doi.org/10.3390/su12031075
  20. S, M., & S, M. (2022). Nonlinear PID (N-PID) Controller for SSSP Grid Connected Inverter Control of Photovoltaic Systems. Electric Power Systems Research, 211. https://doi.org/10.1016/j.epsr.2022.108175
  21. Saleem, O., Ali, S., & Iqbal, J. (2023). Robust MPPT Control of Stand-Alone Photovoltaic Systems via Adaptive Self-Adjusting Fractional Order PID Controller. Energies, 16(13). https://doi.org/10.3390/en16135039
  22. Sarvi, M., & Azadian, A. (2022). A comprehensive review and classified comparison of MPPT algorithms in PV systems. In Energy Systems (Vol. 13, Issue 2, pp. 281–320). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s12667-021-00427-x
  23. Shi, X., & Li, G. (2023). Perturbation Observation Method Based on Fractional Order PID and Extended State Observer. Journal of Electrical Engineering and Technology, 18(4), 2623–2632. https://doi.org/10.1007/s42835-022-01369-9
  24. Smadi, T. Al, Handam, A., Gaeid, K. S., Al-Smadi, A., Al-Husban, Y., & Khalid, A. smadi. (2024). Artificial intelligent control of energy management PV system. Results in Control and Optimization, 14. https://doi.org/10.1016/j.rico.2023.100343
  25. Ullah, K., Ishaq, M., Tchier, F., Ahmad, H., & Ahmad, Z. (2023). Fuzzy-based maximum power point tracking (MPPT) control system for photovoltaic power generation system. Results in Engineering, 20. https://doi.org/10.1016/j.rineng.2023.101466
  26. Zhang, L., Wang, Z., Cao, P., & Zhang, S. (2020). A maximum power point tracking algorithm of load current maximization-perturbation and observation method with variable step size. Symmetry, 12(2). https://doi.org/10.3390/sym12020244

Last update:

No citation recorded.

Last update:

No citation recorded.