Authors,Title,Year,Source title,Link,Author Keywords Rath D.; Patra A.K.; Kar S.K.,Analysis of a Single-Phase Grid-Tied Photovoltaic Inverter for Enhanced Performance Using TLBO-HHOA Regulated FOTDAF Controller,2024,Journal of Renewable Energy and Environment,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85184880091&doi=10.30501%2fjree.2023.377522.1521&partnerID=40&md5=ba0afc0a8d0c396c48a987fd15243c97,IFOBC; Robustness; RSMI; SVPWM; TLBO-HHOA Regulated FOTDAF Smadi T.A.; Handam A.; Gaeid K.S.; Al-Smadi A.; Al-Husban Y.; Khalid A.S.,Artificial intelligent control of energy management PV system,2024,Results in Control and Optimization,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85178957446&doi=10.1016%2fj.rico.2023.100343&partnerID=40&md5=10fbf840ba91a05df57c8e1e7cfd0e61,Artificial Intelligence (AI): Photovoltaic panel; Energy control; Fuzzy-neural network control; Management control; PV system Goudarzian A.; Pourbagher R.,Analysis and circuit design of isolated forward SEPIC converter with minimum-phase stability,2024,Circuit World,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85184409241&doi=10.1108%2fCW-08-2022-0222&partnerID=40&md5=e53d6be21fa295a3a39a65f374180b6e,Circuit design; dc–dc converter; Dynamic modeling; Dynamic performance; Isolated converter; Minimum-phase stability Patrao I.; Liberos M.; González-Medina R.; Torán E.; Figueres E.; Garcerá G.,Small-Signal Model of the NPC + GCC Multilevel Transformerless Inverter in Single-Phase Photovoltaic Power Systems,2023,Electronics (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85170573210&doi=10.3390%2felectronics12173545&partnerID=40&md5=4737fae2994834582ff91142dfe35dc5,double MPPT; MPPT; NPC + GCC topology; photovoltaic inverter; photovoltaics; string inverter; transformerless Vishnu Priya M.; Anandha Kumar G.,Particle swarm optimization for enhanced maximum power point tracking: design and implementation in Proteus,2024,International Journal of Power Electronics and Drive Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85179305449&doi=10.11591%2fijpeds.v15.i1.pp491-497&partnerID=40&md5=54e34799c20effc7351908e10fbdc85b,Low cost MPPT; MPPT; Particle swarm optimization; Perturb and observe; Proteus; PV panel Fernández-Bustamante P.; Calvo I.; Villar E.; Barambones O.,Centralized MPPT based on Sliding Mode Control and XBee 900 MHz for PV systems,2023,International Journal of Electrical Power and Energy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164286144&doi=10.1016%2fj.ijepes.2023.109350&partnerID=40&md5=479f7b7c8ccdcd20b2d351c73651b87a,MPPT; PV systems; Sliding Mode Control; Wireless control; XBee; ZigBee Baatiah A.O.; Eltamaly A.M.; Alotaibi M.A.,Improving Photovoltaic MPPT Performance through PSO Dynamic Swarm Size Reduction,2023,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85172721015&doi=10.3390%2fen16186433&partnerID=40&md5=ee5e6376bec9e9b15ce6586372f06fbd,global maximum power; MPPT; partially shaded PV; particle swarm optimization Siva Subramanian P.; Sutha S.,A Unified Self-Super Lift Luo Converter-Based PA-PID and RDP Controlling Algorithms for EV Application Systems,2024,Electric Power Components and Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85166780558&doi=10.1080%2f15325008.2023.2240799&partnerID=40&md5=398db95cbf8c8b045d5e52b89fdbc2e4,electric vehicle (EV); maximum peak point tracking (MPPT); phasor algebraic (PA-PID) controller; regressive distributed pattern (RDP) controller; Self-Super Lift Luo (SSLLuo) DC–DC converter; solar photovoltaic (PV) Ahmed S.; Mekhilef S.; Mubin M.; Tey K.S.; Kermadi M.,An Adaptive Perturb and Observe Algorithm with Enhanced Skipping Feature for Fast Global Maximum Power Point Tracking under Partial Shading Conditions,2023,IEEE Transactions on Power Electronics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85162639714&doi=10.1109%2fTPEL.2023.3285243&partnerID=40&md5=16340c0c317a6e024417e85b325da257,Global maximum power point (GMPP); maximum power point tracking (MPPT); partial shading condition (PSC); perturb and observe (P&O) Zadehbagheri M.; Ildarabadi R.; Sutikno T.,A unified power flow controller-based robust damping controller considering time delay in electrical power systems,2023,Indonesian Journal of Electrical Engineering and Computer Science,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168943605&doi=10.11591%2fijeecs.v31.i3.pp1295-1310&partnerID=40&md5=2856f8b4b4f36685eff8fcc7fadd641d,Damping controller; Dynamic stability; Electrical power system; FACTS; Robust controller; UPFC; Wide area measurement system Badgaiyan P.; Gupta S.K.; Pandey M.,Detailed review on multiple sources off grid charging station of electric vehicles centred on converters,2023,International Journal of Heavy Vehicle Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85169912598&doi=10.1504%2fIJHVS.2023.132999&partnerID=40&md5=9f99aa75ae5c95889c90b21cc7b8c935,charging station; controllers; CS; DC-AC converters; DC-DC converters; electric vehicles; fuel cell; off grid CS; renewable energy sources; solar; wind Nid A.; Sayah S.; Zebar A.,An effective SMES system control for enhancing the reliability of hybrid power generation systems,2023,Physica C: Superconductivity and its Applications,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168007110&doi=10.1016%2fj.physc.2023.1354322&partnerID=40&md5=07e33aac8d4336edee91abee46f595f9,Fuzzy logic control; Hybrid solar-wind power generation system; PI control; Power grid system; Superconducting magnetic energy storage Wang X.; Wen H.; Chu G.; Zhu Y.; Yang Y.; Wang Y.; Jiang L.,Performance Quantization and Comparative Assessment of Voltage Equalizers in Mismatched Photovoltaic Differential Power Processing Systems,2024,IEEE Transactions on Power Electronics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85179012133&doi=10.1109%2fTPEL.2023.3328325&partnerID=40&md5=31e071f0ce65b7284ca20ed39b14f941,Differential power processing (DPP); performance quantization; power loss analysis; voltage equalizer Amoorezaei A.; Khajehoddin S.A.; Moez K.,A Compact Cuk-Based Differential Power Processing IC with Integrated Magnetics and Soft-Switching Controller for Maximized Cell-Level Power Extraction,2024,IEEE Transactions on Power Electronics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85182348649&doi=10.1109%2fTPEL.2023.3347762&partnerID=40&md5=ffac502b24c4b9f3683c18f33d906daa,Complementary metal-oxide semiconductor (CMOS); differential power processing (DPP); integrated circuit (IC); packaging bond wire; photovoltaic (PV); photovoltaic systems; power management IC; power management integrated circuit (PMIC); triangular conduction mode (TCM); voltage equalization; zero voltage switching Mohamed L.; Aicha G.,Implementation of fuzzy logic MPPT based on Arduino in small scale PV pumping system,2024,International Journal of Power Electronics and Drive Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85178965514&doi=10.11591%2fijpeds.v15.i1.pp192-200&partnerID=40&md5=cc6a9fed75aa4fa58e0755b285501645,Arduino Mega; Boost converter; Fuzzy logic; Photovoltaic panel; Pumping system Lakshmanan S.; Agrawal S.; Sharma A.K.,Honey badger-tuned ANFIS controller for STATCOM employed in hybrid renewable energy source,2023,Electrical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161373992&doi=10.1007%2fs00202-023-01862-y&partnerID=40&md5=9ae20ec1b5628f19841f4428512ecc6d,Adaptive neuro-fuzzy inference system (ANFIS); Diesel generator; Doubly-fed induction generator (DFIG); Honey badger; Microgrid and static synchronous compensator (STATCOM) Pamuk N.,Techno-economic feasibility analysis of grid configuration sizing for hybrid renewable energy system in Turkey using different optimization techniques,2024,Ain Shams Engineering Journal,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85171371993&doi=10.1016%2fj.asej.2023.102474&partnerID=40&md5=9dda84cfb55ed5e53c7acfcea8705796,FHO; GWO; Homer Pro; Hybrid energy systems; Net present cost; Optimization; PSO; Renewable energy; Sustainability Gogolou V.; Voulkidou A.; Karipidis S.; Noulis T.; Siskos S.,Design of crosstalk aware energy harvesting system-on-chip,2023,AEU - International Journal of Electronics and Communications,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85167427080&doi=10.1016%2fj.aeue.2023.154850&partnerID=40&md5=97aa6e605bb6006e84ebd550c42ff0e0,Energy harvesting; Noise integrity; Substrate coupling; System on chip Sharma K.; Thakur S.; Elangovan M.; Sachdeva A.,Low-power FinFET based boost converter design using dynamic threshold body biasing technique,2024,"International Journal of Numerical Modelling: Electronic Networks, Devices and Fields",https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168463416&doi=10.1002%2fjnm.3165&partnerID=40&md5=b1b1935acb4fb17bdb94e5b8ce254c12,body-biasing; charge-pump; DC-boost converter; dynamic threshold Malla S.G.; Malla P.; Karthik M.; Kumar D.S.; Awad H.,Modified Invasive Weed Optimization for the Control of Photovoltaic Powered Induction Motor Drives in Water Pumping Systems,2023,Iranian Journal of Science and Technology - Transactions of Electrical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85147361946&doi=10.1007%2fs40998-023-00589-7&partnerID=40&md5=54c6fa01b966e34a131597fcdfe848f4,Induction motor; Modified invasive weed optimization; MPPT; Partial shading; PV system; Sliding mode control; Water pumping Padmanaban K.; Shunmugalatha A.; Kamalesh M.S.,Experimental Investigation of Efficiency Enhancement in Solar Photovoltaic Systems Under Partial Shading Conditions Using Discrete Time Slime Mould Optimization,2024,Journal of Electrical Engineering and Technology,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85182981962&doi=10.1007%2fs42835-023-01729-z&partnerID=40&md5=f9a8654b85eb162465c5953f7405a166,Buck converter; Discrete controller; Discrete time optimization; Maximum power point tracking; MPPT control; Partial shading; Slime mould optimization; Solar PV systems Vanaja N.; Kumar N.S.,Power Quality Enhancement Using Evolutionary Algorithms in Grid-Integrated PV Inverter,2023,Journal of Electrical Engineering and Technology,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149718833&doi=10.1007%2fs42835-023-01443-w&partnerID=40&md5=7dad6c22d3ffb6f56e6478c3bc057623,Genetic Algorithm (GA); Gird-integrated inverter; Particle Swarm Optimization (PSO); Proportional Integral controller (PI); Real and reactive power; Salp Swarm Optimization (SSO); Solar PV Bharathy Priya D.; Sumathi A.,Reverse flow transition control mechanism with maximum power point controlling (MPPT) technique for solar PV application,2024,"Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A",https://www.scopus.com/inward/record.uri?eid=2-s2.0-85176087392&doi=10.1080%2f02533839.2023.2274084&partnerID=40&md5=5778ae06705ba9e4c4cd9ea753e07e05,bi-directional buck-boost (BBB) converter; Cheng-Chien; Cheng-Chien; Kuo; Kuo; maximum peak point Tracking (MPPT); Photovoltaic (PV) system; reverse flow transition control (RFTC) Manna S.; Akella A.K.; Singh D.K.,Novel Lyapunov-based rapid and ripple-free MPPT using a robust model reference adaptive controller for solar PV system,2023,Protection and Control of Modern Power Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85152628093&doi=10.1186%2fs41601-023-00288-9&partnerID=40&md5=aa9d81e246f99c9d9061790b68a9ca79,Lyapunov stability; Lyapunov-based robust model reference adaptive control (LRMRAC); MPPT; Partial shading; Photovoltaic (PV) Rajasekaran S.; Suresh S.; Ramkumar A.; Karthikeyan K.,A Novel Solar Photovoltaic Integrated Modified SEPIC High Gain DC–DC Converter Using Evolutionary Algorithms for Electric Vehicle Battery Applications,2023,Journal of Electrical Engineering and Technology,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150020580&doi=10.1007%2fs42835-023-01459-2&partnerID=40&md5=ec0646cea2aabb6a060a72743e3fa5a2,Circuit parasites; Maximum Power Point Tracking (MPPT); Non-dominated Sorting Genetic Algorithm (NSGA-II); Output voltage Gainer; RC (resistive and capacitive load); Solar PV Liang H.; Pirouzi S.,Energy management system based on economic Flexi-reliable operation for the smart distribution network including integrated energy system of hydrogen storage and renewable sources,2024,Energy,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85186426101&doi=10.1016%2fj.energy.2024.130745&partnerID=40&md5=0f630ed075e3f18f4a989bd0182f66f6,Bio-waste-units; Economic flexi-reliable operation; Hydrogen storage; Renewable integrated energy system; Smart distribution network Basu A.; Singh M.; Vardhan A.S.S.,Energy regeneration of a position sensorless BLDC-driven PV e-rickshaw with regenerative braking,2024,Electrical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85185135069&doi=10.1007%2fs00202-023-02140-7&partnerID=40&md5=cedc47a93e02731d568eb8bbe832dc31,P&O; PMBLDC motor; Regenerative braking; RTDs; Solar PV; VSI Zhou J.,Optimization of the Fast Frequency Regulation Strategy for Energy Storage-Assisted Photovoltaic Power Stations,2024,Distributed Generation and Alternative Energy Journal,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85185408143&doi=10.13052%2fdgaej2156-3306.3923&partnerID=40&md5=2121790d4bc00f871dbb310ec3a9d0b9,adaptive droop control; equivalent droop control; photovoltaic energy storage hybrid system; Primary frequency regulation Ali N.; Shen X.; Armghan H.; Du Y.,Hierarchical control combined with higher order sliding mode control for integrating wind/tidal/battery/hydrogen powered DC offshore microgrid,2024,Journal of Energy Storage,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85183462208&doi=10.1016%2fj.est.2024.110521&partnerID=40&md5=a6f521ec1b5d7f988724558e6f9f8bf8,Energy storage system; Fuel cell; Integral Terminal Sliding Mode Control; Nonlinear control; Offshore microgrid Méndez G.M.; López-Juárez I.; Alcorta García M.A.; Martinez-Peon D.C.; Montes-Dorantes P.N.,The Enhanced Wagner–Hagras OLS–BP Hybrid Algorithm for Training IT3 NSFLS-1 for Temperature Prediction in HSM Processes,2023,Mathematics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180503964&doi=10.3390%2fmath11244933&partnerID=40&md5=2e7f63d70b011258d5ed6c58a2788984,backpropagation method; general type-2 fuzzy logic systems; hybrid learning; interval type-3 fuzzy logic systems; orthogonal least square method Liu X.; Truesdell D.S.; Faruqe O.; Parameswaran L.; Rickley M.; Kopanski A.; Cantley L.; Coon A.; Bernasconi M.; Wang T.; Calhoun B.H.,A 33nW Fully Autonomous SoC With Distributed Cooperative Energy Harvesting and Multi-Chip Power Management for mm-Scale System-in-Fiber,2023,IEEE Transactions on Biomedical Circuits and Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85169688231&doi=10.1109%2fTBCAS.2023.3309779&partnerID=40&md5=2c764db51491903e7ebce04fe90585df,distributed sensing network; DVFS; energy harvesting; power management; power sharing; ripple boot-up; Self-powered system-on-chip; ultra-low-power Mohebbi P.; Aazami R.; Moradkhani A.; Danyali S.,A novel intelligent hybrid algorithm for maximum power point tracking in PV system,2024,International Journal of Electronics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85145857579&doi=10.1080%2f00207217.2022.2164081&partnerID=40&md5=567840465792e3fc237a9dacf421bef4,hybrid algorithms; MPPT; P&O; partial shadow conditions; particle swarm optimization (PSO) Mohaisen A.K.,Artificial Intelligent Maximum Power Point Controller based Hybrid Photovoltaic/Battery System,2023,International Journal of Electrical and Computer Engineering Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85179369139&doi=10.32985%2fijeces.14.10.11&partnerID=40&md5=a91bbf932e0931df3213f304cdd3a2ab,Artificial Intelligent Maximum Power Point Controller; fuzzy P&O controller; hybrid power system; photovoltaic/ battery system; power management Ramani R.; Nalini A.,IoT Based Real Time Monitoring of PV Sourced Battery with High Gain Boost Integrated Zeta Converter for EV,2023,SSRG International Journal of Electrical and Electronics Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180580434&doi=10.14445%2f23488379%2fIJEEE-V10I11P111&partnerID=40&md5=e927aa2622efe883049c42a5b4e92675,EV battery; High gain boost integrated Zeta converter; IoT; PI-IMFO; PV; SOC Reegan J.; Gnana Saravanan A.,Optimized PI Control for PV-Powered PMBLDC Motor with SEPIC-Zeta Converter,2024,Journal of Electrical Engineering and Technology,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85185473273&doi=10.1007%2fs42835-024-01841-8&partnerID=40&md5=e8c42940b612662ce6cd94aacd6dc8ea,Efficiency; GWO-PI controller; Integrated SEPIC-Zeta converter; Photovoltaic panel; PMBLDC motor; Sensorless speed control; Switching loss; WO-PI controller Wang T.; Lin C.; Zheng K.; Zhao W.; Wang X.,Research on Grid-Connected Control Strategy of Photovoltaic (PV) Energy Storage Based on Constant Power Operation,2023,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180694903&doi=10.3390%2fen16248056&partnerID=40&md5=035d878b477dcd3ed359db31dc99082f,bidirectional DC/DC converter; fuzzy control; PQ control; three-phase voltage-type PWM converter Kumari S.; Pathak P.K.,A State-of-the-Art Review on Recent Load Frequency Control Architectures of Various Power System Configurations,2024,Electric Power Components and Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85165379509&doi=10.1080%2f15325008.2023.2234373&partnerID=40&md5=e06b729dfed13aa268ea40025eaf7bd7,deregulated microgrid; electric vehicles; load frequency control; metaheuristics; renewable energy sources Yong J.K.; Lian W.X.; Ramiah H.; Churchill K.K.P.; Chong G.; Lai N.S.; Chen Y.; Mak P.-I.; Martins R.P.,A Fully Integrated CMOS Tri-Band Ambient RF Energy Harvesting System for IoT Devices,2023,IEEE Transactions on Circuits and Systems I: Regular Papers,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168742940&doi=10.1109%2fTCSI.2023.3304664&partnerID=40&md5=4b68c3b8428bbc6a2fbf4ac914bcbe92,CMOS; impedance matching network (IMN); multiband; over-voltage limiter; Radio frequency energy harvesting (RFEH); tri-band Güven A.F.; Mengi O.Ö.,Nature-ınspired algorithms for optimizing fractional order PID controllers in time-delayed systems,2024,Optimal Control Applications and Methods,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85183193558&doi=10.1002%2foca.3101&partnerID=40&md5=dc4e4276b437aaccea7a583226acfab2,fractional order PID; optimization; statistical analysis; time delay Sivasubramanian J.; Veerayan M.B.,ANN and ANFIS Based Control Approaches for Enhanced Performance of Solar PV Driven Water Pumping Systems Employing Quasi Z-Source Converter,2024,Journal of Electrical Engineering and Technology,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85182842565&doi=10.1007%2fs42835-023-01778-4&partnerID=40&md5=a86fae98a0b381ed0563b1e1c6635c94,ANN control technique; Bi-directional converter; BLDC motor; INC; QZS converter; Solar PV system Omar A.; Yousri D.; Attia H.A.; Allam D.,A new optimal control methodology for improving MPPT based on FOINC integrated with FPI controller using AHA,2023,Electric Power Systems Research,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85167564784&doi=10.1016%2fj.epsr.2023.109742&partnerID=40&md5=c940b54625f2d704ffd68c42cf2bd8dd,Artificial hummingbird algorithm (AHA); Fractional-order incremental conductance FOINC; Maximum photovoltaic power tracking (MPPT) Motukuri D.R.; Prakash P.S.; Rao M.V.G.,Hybrid Optimization for Power Quality Assessment in Hybrid Microgrids: A Focus on Harmonics and Voltage,2023,Journal Europeen des Systemes Automatises,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85182561067&doi=10.18280%2fjesa.560603&partnerID=40&md5=841f86822db45ece526af83590956a10,harmonic distortion; hybrid grey wolf supported sparrow search optimization algorithm; hybrid microgrid; PID controller; power quality; renewable energy; renewable energy; voltage quality Manna S.; Singh D.K.; Akella A.K.,"Hybrid two-stage adaptive maximum power point tracking for stand-alone, grid integration, and partial shaded PV system",2023,International Journal of Adaptive Control and Signal Processing,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85171980967&doi=10.1002%2facs.3684&partnerID=40&md5=45e5dd0d60bb56a3b010667ef3397cf2,grid-integration; maximum power point tracking; modified MRAC; MPPT failure; partial shading; solar PV Widodo Besar Riyadi T.; Effendy M.; Radiant Utomo B.; Tri Wijayanta A.,Performance of a photovoltaic-thermoelectric generator panel in combination with various solar tracking systems,2023,Applied Thermal Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168438613&doi=10.1016%2fj.applthermaleng.2023.121336&partnerID=40&md5=7f4fc4734bbcd8d9a4ef90708144bed4,Combined photovoltaic-thermoelectric generators; Efficiency; Microcontroller; Solar trackers; Temperature profile Guillén-Arenas F.J.; Fernández-Ramos J.; Narvarte L.,An Automatic PI Tuning Method for Photovoltaic Irrigation Systems Based on Voltage Perturbation Using Feedforward Input,2023,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85176461250&doi=10.3390%2fen16217449&partnerID=40&md5=85740e11951eb374085aab6e221a97e5,closed-loop; PI autotuning; PV irrigation; PV system; tuning method; water pumping Silaa M.Y.; Barambones O.; Bencherif A.; Rahmani A.,A New MPPT-Based Extended Grey Wolf Optimizer for Stand-Alone PV System: A Performance Evaluation versus Four Smart MPPT Techniques in Diverse Scenarios,2023,Inventions,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180693260&doi=10.3390%2finventions8060142&partnerID=40&md5=5535e44b4ec543d8336c5d6d42a3547a,EGWO; EOA; GWO; MPPT; PSO; PV system; SCA Karthikeyan R.; Boopathy K.,Improved Grid System Control Using Chaotic PSO-Based PR Controller and Modified SEPIC Topology,2024,SSRG International Journal of Electronics and Communication Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85185447679&doi=10.14445%2f23488549%2fIJECE-V11I2P112&partnerID=40&md5=c63de3b680bbd54e012afcbbb196da3e,ANN MPPT; Chaotic PSO-PR controller; Modified SEPIC; PV system; Reduced switch 21 level MLI Jothi T.; Arun M.; Varadarajan M.,Power flow analysis in a distributed network for a smart grid system,2024,Indonesian Journal of Electrical Engineering and Computer Science,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85184579473&doi=10.11591%2fijeecs.v33.i1.pp42-52&partnerID=40&md5=adedcd9d606899d685662c3440911c8a,Genetic algorithm; IC method; MPPT technique; Smart grid; SPWM control Zhenis S.; Al_Lami G.K.; Hussein S.A.; Mohsen K.S.; Jassim A.A.; Ibrahim S.K.; Alsrray K.B.F.; Abdulhussain Z.N.,A Sliding Mode Controller for Prediction of the Maximum Power Point Tracking of Hybrid Renewable Sources,2023,Majlesi Journal of Electrical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85177455094&doi=10.30486%2fmjee.2023.1994822.1237&partnerID=40&md5=adfde7323277a491ad4007ffeb4a9156,Artificial Neural Network; Maximum Power Point Tracking; Sliding Mode Controller; Solar Panels Sreedhar R.; Karunanithi K.; Ramesh S.,"Design, implementation and empirical analysis of a cascaded hybrid MPPT controller for grid tied solar photovoltaic systems under partial shaded conditions",2024,Measurement: Sensors,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85181031651&doi=10.1016%2fj.measen.2023.100961&partnerID=40&md5=f02134fc65704c441b00483f189589b8,Adaptive neuro-fuzzy inference system (ANFIS); Arithmetic optimization algorithm (AOA); Fractional order proportional integral controller (FOPI); Grey wolf optimization (GWO); Partially shaded conditions (PSC); Photovoltaic (PV); Voltage source inverter (VSI) Kaya E.; Baştemur Kaya C.; Bendeş E.; Atasever S.; Öztürk B.; Yazlık B.,Training of Feed-Forward Neural Networks by Using Optimization Algorithms Based on Swarm-Intelligent for Maximum Power Point Tracking,2023,Biomimetics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85172237074&doi=10.3390%2fbiomimetics8050402&partnerID=40&md5=f46d7304afca89dfa219bb2a36206c0e,feed-forward neural network; maximum power point tracking; metaheuristic algorithm; swarm intelligence Hole S.R.; Goswami A.D.,Design of a novel hybrid soft computing model for passive components selection in multiple load Zeta converter topologies of solar PV energy system,2024,Energy Harvesting and Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161349896&doi=10.1515%2fehs-2023-0029&partnerID=40&md5=9a1f99d98148125fccd194ec471da643,conversion efficiency; gain levels; GWO; passive components; PSO; THD Vargas O.S.; De Leon Aldaco S.E.; Alquicira J.A.; Vela-Valdes L.G.; Nunez A.R.L.,Adaptive Network-Based Fuzzy Inference System (ANFIS) Applied to Inverters: A Survey,2024,IEEE Transactions on Power Electronics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85176364194&doi=10.1109%2fTPEL.2023.3327014&partnerID=40&md5=67d7244e7c7fd67767bd6f0b93139e34,Adaptive network-based fuzzy inference systems (ANFIS); artificial intelligence; fuzzy inference systems; inverter performance; inverters; multilevel inverters; power quality improvement; real-time control; systematic literature review harmonic content reduction Sahani M.; Biswal B.; Prasad E.N.; Dash P.K.; Panda S.K.,An Adaptive Integral Backstepping SMC and Robust Functional Expanded Multikernel BLS Based MPPT Control in PV-Battery DC Microgrid System,2024,IEEE Transactions on Power Electronics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85177026826&doi=10.1109%2fTPEL.2023.3332641&partnerID=40&md5=76a11580a98dc6651c2292bfc96730ff,Adaptive integral backstepping sliding mode control; DSPACE hardware in loop; functional expanded broad learning system; kernel learning; Lyapunov criteria; maximum power point tracking; photovoltaic Sai B.S.V.; Khadtare S.A.; Chatterjee D.,An improved weather adaptable P&O MPPT technique under varying irradiation condition,2023,ISA Transactions,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85162102722&doi=10.1016%2fj.isatra.2023.05.025&partnerID=40&md5=f8cfefb0f0fa108fcff1b662782d6d56,Boost Converter and MPP Tracking; PV Modelling Satyanarayana V.; Krishnamoorthy V.,Fault analysis in grid-connected solar photovoltaic systems based on multi-objective grey wolf optimisation,2023,Indonesian Journal of Electrical Engineering and Computer Science,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168958295&doi=10.11591%2fijeecs.v31.i3.pp1250-1257&partnerID=40&md5=8aa992ab41acfdc081a3a618e5018bbe,Artificial bee colony algorithm; Genetic algorithm; Maximum power point tracking; Multi objective grey wolf optimization; Particle swarm optimization; Photovoltaic model; Sag and swell Saritha P.; Devi V.; Babu A.; Praveen R.P.,Design and analysis of multiple input single output converter for hybrid renewable energy system with energy storage capability,2023,Ain Shams Engineering Journal,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149776085&doi=10.1016%2fj.asej.2023.102194&partnerID=40&md5=b8e35f972e706ddf8fba46642f752caf,Decoupled control; Energy storage; Hybrid renewable energy system; Multiple input single output Dagal I.; Akın B.; Dari Y.D.,A modified multi-stepped constant current based on gray wolf algorithm for photovoltaics applications,2024,Electrical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85181931217&doi=10.1007%2fs00202-023-02180-z&partnerID=40&md5=78d9bcb0ff50242c41a6888d0090a936,Efficiency; gray wolf optimization algorithm; Multi-stepped constant current; Partial shading Sivasubramanian J.; Bairavan Veerayan M.,Performance Analysis of a Quasi-Z-Source Converter for Solar Photo Voltaic System Powered Water Pumping System,2024,Electric Power Components and Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85166662502&doi=10.1080%2f15325008.2023.2239218&partnerID=40&md5=4c2ef2dcb68f73644f139dcf4aba5d14,ANN control technique; BLDC motor; INC; PV system; QZS boost converter Sankar P.; Sheela A.,Hybrid whale artificial bee colony optimized improved Landsman converter for renewable energy-based microgrid application,2024,Electrical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85183004944&doi=10.1007%2fs00202-023-02189-4&partnerID=40&md5=95ab67cb9e052c6e958ab74c66dcbe26,DFIG-based WECS; Grid voltage synchronization; Improved Landsman converter; PI controller; PV system; WABCO algorithm-based PI controller Thanh P.H.; Dai L.V.,A Reliable Tool Based on the Fuzzy Logic Control Method Applying to the DC/DC Boost Converter of Off-Grid Photovoltaic to Track the Maximum Power Point,2023,International Journal of Intelligent Systems and Applications in Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85174828439&partnerID=40&md5=0c9af854d31fe50c817f6abd9cd3b73f,DC-DC converter; fuzzy logic; incremental conductance; maximum power point; perturb and observe; solar photovoltaic Selma B.; Bounadja E.; Belmadani B.; Selma B.; Fliess M.,A novel intelligent control approach for wind energy conversion systems with synchronous reluctance generators,2024,International Journal of Circuit Theory and Applications,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85184153655&doi=10.1002%2fcta.3958&partnerID=40&md5=883aa43fe14c85e8be00e868cd281a64,intelligent proportional; model-free control; synchronous reluctance generators; vector control; wind power conversion systems Inomoto R.; Filho A.J.S.; Monteiro J.R.; da Costa E.C.M.,Genetic algorithm based tuning of sliding mode controllers for a boost converter of PV system using internet of things environment,2024,Results in Control and Optimization,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85184860678&doi=10.1016%2fj.rico.2024.100389&partnerID=40&md5=659f3249a99d290408018da04c394852,Boost converter; Genetic algorithm; Maximum power point tracking; Photovoltaic; Sliding mode control Yin L.; Li Q.; Breaz E.; Chen W.; Gao F.,Model Guided Extremum Seeking and Active Disturbance Rejection Control for Efficiency Real-Time Optimization of PEMFC System,2024,IEEE Transactions on Industrial Electronics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163776415&doi=10.1109%2fTIE.2023.3288168&partnerID=40&md5=6eecdd05e6163c911f4ba003f507ccf2,Efficiency uncertainty; empirical modeling; fuel cells; real-Time optimization (RTO) Mahendravarman I.; Ragavendiran A.; Chithradevi S.A.,Improved power quality for photovoltaic grid integration power system using an intelligent controller fed SL–SC boost converter supplied reduced switch cascade multilevel inverter,2024,Electrical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85169312995&doi=10.1007%2fs00202-023-01981-6&partnerID=40&md5=6aa759a2e0352d15c0a8d693b8656180,Feedforward neural networks; Grids; Maximum power point trackers; Power system control; Solar energy; Switched capacitor circuits; Switched inductor Sethi B.; Mitra L.,Design and implementation of grid tied high step-up DC-DC converter with switched capacitor,2024,International Journal of Power Electronics and Drive Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85179337536&doi=10.11591%2fijpeds.v15.i1.pp323-334&partnerID=40&md5=f8cbd6e2a115766a0534affe0f0e04bd,CCM; High gain converter; SPWM; Switched capacitor; Three-phase inverter Corrêa H.P.; Vieira F.H.T.,Analytical estimation of three-phase inverter input impedance applied to MPPT in off-grid variable-voltage photovoltaic systems,2024,International Journal of Electrical Power and Energy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85171777672&doi=10.1016%2fj.ijepes.2023.109482&partnerID=40&md5=b1a9880cd8882d12fe993882c4b95ce4,Analytical method; Input impedance; Maximum power point tracking; Photovoltaic system Seba S.; Birane M.; Benmouiza K.,A COMPARATIVE ANALYSIS OF BOOST CONVERTER TOPOLOGIES FOR PHOTOVOLTAIC SYSTEMS USING MPPT (P&O) AND BETA METHODS UNDER PARTIAL SHADING,2023,Revue Roumaine des Sciences Techniques Serie Electrotechnique et Energetique,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85182482300&doi=10.59277%2fRRST-EE.2023.4.9&partnerID=40&md5=7df4cded8545e2c911ae3792a3c80c0a,Beta method; Dc-dc converter; Maximum power point tracking (MPPT); Photovoltaic (PV) system; Topologies Al-Dhaifallah M.; Alkhalaf S.; Oikawa H.,Performance Enhancement of MPPT Controller to Tune Optimal Voltage for PV-BES System Using Converged Barnacles Mating Optimizer Algorithm Based ANFIS,2024,International Journal of Fuzzy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85178236293&doi=10.1007%2fs40815-023-01622-x&partnerID=40&md5=8c00849b0455fcf32856abeabb176686,ANFIS; CBMO algorithm; Grid system; MPPT; PV; Solar system Ahmed M.M.R.; Mirsaeidi S.; Koondhar M.A.; Karami N.; Tag-Eldin E.M.; Ghamry N.A.; El-Sehiemy R.A.; Alaas Z.M.; Mahariq I.; Sharaf A.M.,Mitigating Uncertainty Problems of Renewable Energy Resources Through Efficient Integration of Hybrid Solar PV/Wind Systems Into Power Networks,2024,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85186765338&doi=10.1109%2fACCESS.2024.3370163&partnerID=40&md5=66b37efaa0296a39dd2cc4b15228a926,ac-dc converters; dc-dc converters; Grid-connected; intermittency; solar; wind Benlafkih A.; El Idrissi Mohamed C.; Hadjoudja A.; El Moujahid Y.; El Maliki A.; Echarradi O.; Mounir F.,A new approach to solve the problem of partial shading in a photovoltaic system,2023,Indonesian Journal of Electrical Engineering and Computer Science,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85177888462&doi=10.11591%2fIJEECS.V32.I3.PP1298-1308&partnerID=40&md5=bde2455d2264156899fd6356b4922079,Cuckoo search algorithm; GMPP; MPPT; Partial shading condition; Photovoltaic system; PID; Renewable energy Kumar P.; Ajmeri M.,Robust control of a single-ended primary inductor converter using adrc technique,2024,Engineering Research Express,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85181165599&doi=10.1088%2f2631-8695%2fad153e&partnerID=40&md5=0f028ee2c5895f29ecef08130d95c45b,ADRC; DC-DC; ESO; IAE; maximum sensitivity; SEPIC Alaas Z.; Elbarbary Z.M.S.; Rezvani A.; Le B.N.; khaki M.,Analysis and enhancement of MPPT technique to increase accuracy and speed in photovoltaic systems under different conditions,2023,Optik,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85167460998&doi=10.1016%2fj.ijleo.2023.171208&partnerID=40&md5=be71e4c058f0509fa04c6a18a61adca3,Fluid search optimization; Fuzzy controller; MPPT; PV; Renewable energy Amer M.; Abuelnasr A.; Ali M.; Hassan A.; Trigui A.; Ragab A.; Sawan M.; Savaria Y.,Enhanced Dynamic Regulation in Buck Converters: Integrating Input-Voltage Feedforward With Voltage-Mode Feedback,2024,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85182361050&doi=10.1109%2fACCESS.2024.3351051&partnerID=40&md5=cbf362c86e63f60e7effb4ceb4be4281,Buck converter; controller design; DC-DC converter; dynamic regulation; feedforward; GaN half-bridge; high-voltage circuits; stability boundary locus; voltage-mode feedback Samosir A.S.; Sulistiyanti S.R.; Gusmedi H.; Mardiyah L.,Dynamic evolution control for the DC/DC boost converter design and implementation,2024,International Journal of Power Electronics and Drive Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85179363887&doi=10.11591%2fijpeds.v15.i1.pp357-366&partnerID=40&md5=0b457e9e02963ebefa583d3d595c2547,Boost converter; Duty cycle formula; Dynamic evolution control; Hardware implementation; Non-linear controller Serir C.; Tadjine K.; Bensmail S.; Rekioua D.; Belkaid A.; Hadji S.; Colak I.,Smart Energy Management Control Based on Fuzzy Logic Controller in a Standalone Photovoltaic/Wind System with Battery Storage,2024,Electric Power Components and Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85184174225&doi=10.1080%2f15325008.2024.2309631&partnerID=40&md5=ce99c7661fb4f65681412d68cbfbaf8d,battery storage; energy management; fuzzy logic controller; hybrid system; MPPT; Photovoltaic panel; wind turbine Tripathi S.; Shrivastava A.; Jana K.C.,Chimp optimization-based fuzzy controller for hybrid electric vehicle speed control using electronic throttle plate,2024,Optimal Control Applications and Methods,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85170856075&doi=10.1002%2foca.3051&partnerID=40&md5=0e07f493274d4715e40fcb1ea1adfb37,chimp (ChOA); electronic throttle control system; fuzzy logic controller; HEV; mouth flame (MFO); optimization; optimization; PSO Sathasivam K.; Garip I.; Saeed S.H.; Yais Y.; Alanssari A.I.; Hussein A.A.; Hammoode J.A.; Lafta A.M.,A Novel MPPT Method Based on PSO and ABC Algorithms for Solar Cell,2024,Electric Power Components and Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164522404&doi=10.1080%2f15325008.2023.2228795&partnerID=40&md5=089779b8b05257bda2d7641862de8ef2,ABC; boost converter; MPPT; photovoltaic; PSO Jagadeesh I.; Indragandhi V.,"Solar photo voltaic based hybrid CUK, SEPIC, ZETA converters for microgrid applications",2023,"e-Prime - Advances in Electrical Engineering, Electronics and Energy",https://www.scopus.com/inward/record.uri?eid=2-s2.0-85178002608&doi=10.1016%2fj.prime.2023.100364&partnerID=40&md5=20d6037f7cf0c5dfcb7fe09d6e2ae17e,CUK; Fuel cell; Microgrid; SEPIC; Solar PV Zhu D.; Wang D.; Qian L.,A multisource energy harvesting circuit for vibration and light energy with MPPT,2024,International Journal of Circuit Theory and Applications,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85182477722&doi=10.1002%2fcta.3932&partnerID=40&md5=61fccc656854c4d6c067317497829d88,adaptive MPPT; cold start; flyback converter; multi-PZTs; multisource energy harvesting Usha S.; ThamizhThentral T.M.; Palanisamy R.; Geetha A.; Geetha P.; Kitmo,Mitigation of circulating current and common mode voltage in grid-connected induction motor drive using modified PID-fuzzy controller,2024,"Multiscale and Multidisciplinary Modeling, Experiments and Design",https://www.scopus.com/inward/record.uri?eid=2-s2.0-85165872375&doi=10.1007%2fs41939-023-00192-7&partnerID=40&md5=87a31d7cdf780923d2c3d710bc90455d,Circulating bearing current; Common mode voltage; Controller; Induction motor drive; Inverter; Shaft voltage Agwa A.M.; Alanazi T.I.; Kraiem H.; Touti E.; Alanazi A.; Alanazi D.K.,MPPT of PEM Fuel Cell Using PI-PD Controller Based on Golden Jackal Optimization Algorithm,2023,Biomimetics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85172226285&doi=10.3390%2fbiomimetics8050426&partnerID=40&md5=73590a57f7e17978c5e0ff9e26ed2b2e,bioinspired algorithms; metaheuristic optimizers; MPPT; PEM fuel cell; PI-PD controller Chen Y.; Lin D.; Xu F.; Li X.; Wang W.; Ding S.,Research on Q-Table Design for Maximum Power Point Tracking-Based Reinforcement Learning in PV Systems,2023,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85176359974&doi=10.3390%2fen16217286&partnerID=40&md5=6cd11dd2a2e509b6412ccea8ceda9bc8,MPPT; photovoltaic power; Q-learning; Q-table design; RL Bhattacharjee B.; Sadhu P.K.; Ganguly A.; Naskar A.K.,Photovoltaic energy based fast charging strategy for VRLA batteries in small electric vehicles for sustainable development,2024,Microsystem Technologies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85176392597&doi=10.1007%2fs00542-023-05551-5&partnerID=40&md5=fe2f8c58769719c527ee118748408361, Themozhi G.; Srinivasan K.; Srinivas T.A.; Prabha A.,Analysis of suitable converter for the implementation of drive system in solar photovoltaic panels,2024,Electrical Engineering and Electromechanics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85181965736&doi=10.20998%2f2074-272X.2024.1.03&partnerID=40&md5=f2557e6e2aa6a4dec4a1aa3dec4daf95,induction motor drive; interleaved Cuk converter; voltage source inverter Ahmad W.; Qinglei Z.,2DOF-FOPID-IF control with improved sparrow modulation for cascaded H-bridge multilevel inverter in PV applications,2024,International Journal of Circuit Theory and Applications,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85186460949&doi=10.1002%2fcta.3968&partnerID=40&md5=1c7e607a50b71af94b5f7773e1258ac9,cascaded H-bridge inverter; controller; harmonics; modulation; optimization Anshory I.; Jamaaluddin J.; Wisaksono A.; Sulistiyowati I.; Hindarto; Rintyarna B.S.; Fudholi A.; Rahman Y.A.; Sopian K.,Optimization DC-DC boost converter of BLDC motor drive by solar panel using PID and firefly algorithm,2024,Results in Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85183436028&doi=10.1016%2fj.rineng.2023.101727&partnerID=40&md5=2911a9a36c8a6a4d2cd3c8328f16d61c,BLDC motor; DC-DC boost converter; Firefly algorithm; PID controller; Solar panel Ullah K.; Ishaq M.; Tchier F.; Ahmad H.; Ahmad Z.,Fuzzy-based maximum power point tracking (MPPT) control system for photovoltaic power generation system,2023,Results in Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85172305562&doi=10.1016%2fj.rineng.2023.101466&partnerID=40&md5=e3b845a5114fdbd5a2af468290bbc974,DC converter; Fuzzy logic controller; MPPT; Photovoltaic; Renewable energy Singh A.G.; Chauhan R.K.,An algorithmic-based energy sharing model with peer-to-peer energy trading for clustered residential buildings,2023,Journal of Building Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161973657&doi=10.1016%2fj.jobe.2023.106960&partnerID=40&md5=61ce9f943ffb32ded4107cd06ce9220f,Central controller; DC microgrid; Decentralized/centralised/ distributed control; Greedy algorithm; Peer-to-peer energy trading Khatri M.; Matcha M.; Kar S.; Verma N.; Patwa S.,Integrating Solar Energy with Battery Storage Systems for Optimal Efficiency using Landsman Converter,2023,SSRG International Journal of Electrical and Electronics Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85170038641&doi=10.14445%2f23488379%2fIJEEE-V10I8P109&partnerID=40&md5=ad947f112f0d641e23410a1412fb772b,BEES; Landsman converter; LC filters; MATLAB; PV system Elminshawy N.A.S.; Osama A.; Elbaksawi O.; Arıcı M.; Naeim N.,"Energetic, environmental and economic (3E) analysis of a CSA algorithm optimized floatovoltaic system integrated with heat sink: Modeling with experimental validation",2024,Engineering Analysis with Boundary Elements,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85179854305&doi=10.1016%2fj.enganabound.2023.12.005&partnerID=40&md5=257c66b8c10262a79e3aefd3eb236bce,carbon dioxide; Cuckoo search algorithm; LCOE; MPPT; Passive cooling; Photovoltaic Gao D.; Xie W.; Wang Y.,A control method for water cannon of unmanned fireboats based on EGWO-ADFUZZY,2023,Ocean Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85178929400&doi=10.1016%2fj.oceaneng.2023.116237&partnerID=40&md5=47bbdd0fb5a99cc786a05f1c34cd6e05,Adaptive fuzzy control; Firefighting; GWO; Online PSO; Ship motion; Water cannon Azarinfar H.; Khosravi M.; Soroush M.Z.; Ghamari S.M.,Robust adaptive backstepping control of H-bridge inverter based on type-2 fuzzy optimization of parameters,2024,IET Power Electronics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85186539381&doi=10.1049%2fpel2.12669&partnerID=40&md5=3c198fd736edac6752bcddabc7c5a6bc,disturbance; H-bridge inverter; neural network; total harmonic distortion; type-2 fuzzy Dhanalakshmi P.; Garladinne R.; Kavitha E.; Akram P.S.; Sheela A.; Taqui S.N.; Al-Ammar E.A.; Wabaidur S.M.; Iqbal A.,Performance Measurement of HVAC Systems with Integrated Phase Change Materials Using Fuzzy Logical Controller,2024,Electric Power Components and Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161847505&doi=10.1080%2f15325008.2023.2220335&partnerID=40&md5=5d92ece193ff8192d8a72a5658383417,fuzzy logic control; phase change materials; phase shift; waste heat recovery Misra S.; Panigrahi P.K.; Dey B.,An efficient way to schedule dispersed generators for a microgrid system's economical operation under various power market conditions and grid involvement,2023,International Journal of System Assurance Engineering and Management,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85162266589&doi=10.1007%2fs13198-023-01983-4&partnerID=40&md5=d7fdd84b7badde827b7a66a2ae50d0ba,Crow search algorithm; Electricity market price; Microgrid energy management; Renewable energy sources; Time of usage Nishat M.M.; Sakib S.; Rahman K.A.; Ahmed M.; Shagor M.R.K.; Faisal F.; Ahmed A.,Applying Particle Swarm Optimization for Investigating the Stability of DC-DC Buck-Boost Converter: A Software Based Approach,2024,International Journal of Modelling and Simulation,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85185685224&doi=10.1080%2f02286203.2024.2315324&partnerID=40&md5=2941ef76b75e15f0283d9c21d91e60de,buck-boost converter; eigenvalue analysis; Particle swarm optimization; PID controller; stability analysis; state space average method Luna L.; López K.; Garrido R.; Mondié S.; Cantera L.,A Delay-based Nonlinear Controller for Nanopositioning of Linear Ultrasonic Motors,2024,"International Journal of Control, Automation and Systems",https://www.scopus.com/inward/record.uri?eid=2-s2.0-85181235284&doi=10.1007%2fs12555-021-0951-x&partnerID=40&md5=ac0c24efd0c0724cf23cd113685020b7,Delay-based control; nanopositioning; proportional integral retarded controller; real-time control; ultrasonic motor Tekin H.; Setrekli G.; Murtulu E.; Karşıyaka H.; Ertekin D.,A Proposed Single-Input Multi-Output Battery-Connected DC–DC Buck–Boost Converter for Automotive Applications,2023,Electronics (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85175253825&doi=10.3390%2felectronics12204381&partnerID=40&md5=47a5232d0c403a7a5b57404b911dea2e,battery applications; DC–DC buck–boost converter; electric vehicle; real-time visualization; switching systems S M.; Jebaseelan S.,A comprehensive comparative study on intelligence based optimization algorithms used for maximum power tracking in grid-PV systems,2024,Sustainable Computing: Informatics and Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85179841886&doi=10.1016%2fj.suscom.2023.100946&partnerID=40&md5=5255cd2b8926801e4c62227471d842b6,Electrical Energy; Grid System; Maximum Power Point Tracking (MPPT); Mongoose Optimization (MO); Prairie Dog Optimization Algorithm (PDOA); Solar Photovoltaic (PV) Gurgi Z.K.; Abdalla A.I.; Hassan E.D.,Simulation analysis of DC motor based solar water pumping system for agriculture applications in Rural areas,2023,International Journal of Power Electronics and Drive Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180696971&doi=10.11591%2fijpeds.v14.i4.pp2409-2417&partnerID=40&md5=5234ff3741fc8562b60b4f9902b417c1,Centrifugal pump; Incremental conductance; Maximum power point tracking; Permanent magnet DC motor; Solar water pump Blaabjerg F.; Yang Y.; Kim K.A.; Rodriguez J.,Power Electronics Technology for Large-Scale Renewable Energy Generation,2023,Proceedings of the IEEE,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85151370533&doi=10.1109%2fJPROC.2023.3253165&partnerID=40&md5=9e52366e48f3e3ac10235019464cfbfb,Control of large-scale renewable energy (REN); energy storage (ES); inverter-based resources; power converters; REN generation; solar photovoltaic (PV) systems; wind power systems Aly M.; Mohamed E.A.; Rezk H.; Nassef A.M.; Elhosseini M.A.; Shawky A.,An Improved Optimally Designed Fuzzy Logic-Based MPPT Method for Maximizing Energy Extraction of PEMFC in Green Buildings,2023,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85147841834&doi=10.3390%2fen16031197&partnerID=40&md5=88ee22335d63026c81a6136b58538a87,fuzzy logic control; green buildings; LSHADE optimization algorithm; maximum power point tracking (MPPT); optimized FLC; proton exchange membrane fuel cells (PEMFCs); renewable energy Shi X.; Li G.,Perturbation Observation Method Based on Fractional Order PID and Extended State Observer,2023,Journal of Electrical Engineering and Technology,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85146094621&doi=10.1007%2fs42835-022-01369-9&partnerID=40&md5=1a61750474d52ab5215ea909ac37218f,Final manuscript; Fractional order PID (FOPID); Linear extension state observer (LESO); Perturbation observation method (P&O); Power correction Bharat M.; Murty A.S.R.; Dash R.,Design and analysis of trans Z-source inverter for electric vehicle applications using neural network-clustering,2023,Bulletin of Electrical Engineering and Informatics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85146514181&doi=10.11591%2feei.v12i3.4818&partnerID=40&md5=cc44561ca412ad569ed47293ac9b5410,Electric vehicle; Quasi-Z-source; Total harmonic distortion; Trans Z source; Z-source inverter Sehirli E.; Üstün Ö.,Design and implementation of high-power factor isolated Ćuk converter-based LED driver with SiC MOSFET,2023,Electrical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141675202&doi=10.1007%2fs00202-022-01679-1&partnerID=40&md5=3f8fc85ec11c74babf5aa1d411297652,Isolated Ćuk; LED driver; PFC; SiC MOSFET Sutikno T.; Aprilianto R.A.; Nik Idris N.R.; Samosir A.S.,Performance numerical evaluation of modified single-ended primary-inductor converter for photovoltaic systems,2023,International Journal of Electrical and Computer Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85151896444&doi=10.11591%2fijece.v13i4.pp3720-3732&partnerID=40&md5=0a07a9ca6851f9326c97158359ceb140,Boost converter; converter; Photovoltaic system; Power simulator; Single-ended primary-inductor; Voltage gain; Voltage stress Ben Safia Z.; Allouche M.; Chaabane M.,Renewable energy management of an hybrid water pumping system (photovoltaic/wind/battery) based on Takagi–Sugeno fuzzy model,2023,Optimal Control Applications and Methods,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126263575&doi=10.1002%2foca.2884&partnerID=40&md5=101ff638877676fcf8caff2655ba9f19,battery storage; hybrid system; power management supervisor; pumping system; PV system; wind system DOBREA M.-A.; ILIESCU S.-S.; ARGHIRA N.; VASLUIANU M.,Modeling of a Hybrid Controller for Electric Vehicle Battery Charging Using Photovoltaic Panels,2023,Studies in Informatics and Control,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85184170111&doi=10.24846%2fV32I4Y202303&partnerID=40&md5=bd4073dbec5b16174fe80baab685685b,Battery charging; Electric vehicle; Fuzzy-PID controller; Phase-Shifted Full-Bridge converters; Photovoltaic panel; PID controller Naik P.L.; Rambabu C.; Rasululla S.K.; Reddy A.N.; Himabindu E.; Gogula V.; Padmavathi S.V.,ANFIS control based improve PCC voltage quality of an isolated photovoltaic-wind and hybrid energy restoration micro grid system,2023,Microsystem Technologies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85145102598&doi=10.1007%2fs00542-022-05408-3&partnerID=40&md5=e7695ef1414d83782d0a8b087636798c, Fekik A.; Azar A.T.; Hameed I.A.; Hamida M.L.; Amara K.; Denoun H.; Kamal N.A.,Enhancing Photovoltaic Efficiency with the Optimized Steepest Gradient Method and Serial Multi-Cellular Converters,2023,Electronics (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85160359651&doi=10.3390%2felectronics12102283&partnerID=40&md5=ada88fc5027c5d25f6d50bf96948fe6b,maximum power point (MPP); multicellular converter; optimized steepest gradient method (OSGM); photovoltaic (PV); response time Asif; Ahmad W.; Qureshi M.B.; Khan M.M.; Fayyaz M.A.B.; Nawaz R.,Optimizing Large-Scale PV Systems with Machine Learning: A Neuro-Fuzzy MPPT Control for PSCs with Uncertainties,2023,Electronics (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85152788857&doi=10.3390%2felectronics12071720&partnerID=40&md5=b034d7e816909f3a1054e67f3f99c984,machine learning; maximum power point tracking; partial shading; terminal sliding mode control Zerouali M.; El Ougli A.; Tidhaf B.,A robust fuzzy logic PI controller for solar system battery charging,2023,International Journal of Power Electronics and Drive Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144989114&doi=10.11591%2fijpeds.v14.i1.pp384-394&partnerID=40&md5=9f7b994361f3d9033a58b1777388df5a,Battery; Optimal PI; Photovoltaic system; PID controller; Variable step size P&O Farag M.M.; Patel N.; Hamid A.-K.; Adam A.A.; Bansal R.C.; Bettayeb M.; Mehiri A.,An Optimized Fractional Nonlinear Synergic Controller for Maximum Power Point Tracking of Photovoltaic Array under Abrupt Irradiance Change,2023,IEEE Journal of Photovoltaics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148462792&doi=10.1109%2fJPHOTOV.2023.3236808&partnerID=40&md5=ccc36891a4b01bd35198e2ed7b89cfd7,Fractional nonlinear synergetic controller (FNSC); macrovariable optimization; maximum power point (MPP) tracking; photovoltaic (PV) array; real-time experi-mentation Wang Y.; Yu X.; Wang X.,A novel hybrid multi-verse optimizer with queuing search algorithm,2023,Journal of Intelligent and Fuzzy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85166647705&doi=10.3233%2fJIFS-223369&partnerID=40&md5=e04cc7a8522ada94e951f744298b076b,metropolis rule; Multi-verse optimizer; queuing searching algorithm Khazaee A.; Yazdani A.; Hesar H.M.; Wu B.,Efficient MPPT for BLDCM-Driven PV Pumping System Based on Ripple Correlation Control,2023,IEEE Transactions on Power Electronics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85153343567&doi=10.1109%2fTPEL.2023.3266300&partnerID=40&md5=71a560f10ab6855052bde0c8ae230c7a,Brushless machines; photovoltaic systems; variable speed drives; water pumps Ram S.K.; Sahoo S.R.; Das B.B.; Mahapatra K.; Mohanty S.P.,Eternal-thing 2.0: Analog-Trojan-resilient Ripple-less Solar Harvesting System for Sustainable IoT,2023,ACM Journal on Emerging Technologies in Computing Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85162028186&doi=10.1145%2f3575800&partnerID=40&md5=bcd71cf64dc375051c76d42f0bd69a33,Additional Key Words and PhrasesAging tolerant; analog Trojan; charge pump (CP); energy-harvesting system (EHS); maximum power point tracking (MPPT); ripple-less; sustainable IoT Zishan F.; Montoya O.D.; Giral-Ramírez D.A.,New Design and Study of the Transient State and Maximum Power Point Tracking of Solid Oxide Fuel Cells Using Fuzzy Control,2023,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85151467125&doi=10.3390%2fen16062572&partnerID=40&md5=bfb87a44045791f1d787fad15656e8b8,fuel cell; fuzzy controller; maximum power point tracking; transient state Hamza A.; Uneeb M.; Ahmad I.; Saleem K.; Ali Z.,Variable Structure-Based Control for Dynamic Temperature Setpoint Regulation in Hospital Extreme Healthcare Zones,2023,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85160642381&doi=10.3390%2fen16104223&partnerID=40&md5=a4cd2003b3fd40f9ab47f4360a96acb4,dynamics setpoints; HVAC; operation room; sliding mode control; temperature environment; thermal model Chandrarathna S.C.; Moon S.-Y.; Lee J.-W.,A Power Management System for Hybrid Energy Harvesting From Multiple Multitype Sources and Ultrawide Range Source Tracking,2023,IEEE Transactions on Power Electronics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144049357&doi=10.1109%2fTPEL.2022.3224394&partnerID=40&md5=d2666f7585f01ece0f0f4d3b0dc2a541,Dc-dc converters; efficiency; energy harvesting; maximum power point tracking; power management Oluklu D.; Iç Y.T.,A Forecasting Study for Renewable Energy Resources Investments in Turkey: TOPSIS-Based Linear Programming Model,2023,Process Integration and Optimization for Sustainability,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141978611&doi=10.1007%2fs41660-022-00297-5&partnerID=40&md5=2487d365dd1841832598e1cbdd767d10,Electrical energy planning; Linear programming; Multicriteria decision-making; Renewable electrical energy sources; Technique for Order Preference by Similarity to Ideal Solution Karafil A.,Thinned-out controlled IC MPPT algorithm for class E resonant inverter with PV system,2023,Ain Shams Engineering Journal,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139299878&doi=10.1016%2fj.asej.2022.101992&partnerID=40&md5=b4ce64a4cdb8b0a754d38d464fc32bf9,Class E resonant inverter; IC MPPT; Thinned-out control; Zero voltage switching Chakraborty M.R.; Dawn S.; Saha P.K.; Basu J.B.; Ustun T.S.,System Economy Improvement and Risk Shortening by Fuel Cell-UPFC Placement in a Wind-Combined System,2023,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149173194&doi=10.3390%2fen16041621&partnerID=40&md5=20de4a049d3c313d77924d6d3d6b0f56,CVaR; electricity market; fuel cell; system profit; UPFC; VaR; wind energy Abdelkader B.; Merabti A.; Yamina B.,Using PSO algorithm for power flow management enhancement in PV-battery grid systems,2023,International Journal of Power Electronics and Drive Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144954627&doi=10.11591%2fijpeds.v14.i1.pp413-425&partnerID=40&md5=a86cd496c381fdd5a73b1869d325d54f,Battery storage system; DC/DC bidirectional converter; Fuzzy logic; PSO; PV Solar Zaid S.A.; Bakeer A.; Albalawi H.; Alatwi A.M.; Abdeldaim H.; Manqarah B.,Model-Free Predictive Current Control of a 3-φ Grid-Connected Neutral-Point-Clamped Transformerless Inverter,2023,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85152765602&doi=10.3390%2fen16073141&partnerID=40&md5=411fe9fbbc94b4a662f2b948d674d7d8,model-free predictive control; MPPT; NPC; PV; transformerless inverter Osama abed el-Raouf M.; A. Mageed S.A.; Salama M.M.; Mosaad M.I.; AbdelHadi H.A.,Performance Enhancement of Grid-Connected Renewable Energy Systems Using UPFC,2023,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161685670&doi=10.3390%2fen16114362&partnerID=40&md5=cc40d1b526e6b954e9315fdd90464825,Atom Search Optimization (ASO); FOPID controller; hybrid system; photovoltaic (PV); power quality (PQ); Unified Power Flow Controller (UPFC); wind turbine (WT) Abouobaida H.; Mchaouar Y.; Abouelmahjoub Y.; Mahmoudi H.; Abbou A.; Jamil M.,Performance optimization of the INC-COND fuzzy MPPT based on a variable step for photovoltaic systems,2023,Optik,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149370007&doi=10.1016%2fj.ijleo.2023.170657&partnerID=40&md5=8583932190ce5cea593b4c7166f7a859,Fuzzy controller; MPPT; Optimization; Performance; Photovoltaic; Quadratic boost converter; Variable step Büyük M.; İnci M.,Improved drift-free P&O MPPT method to enhance energy harvesting capability for dynamic operating conditions of fuel cells,2023,Energy,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85145099004&doi=10.1016%2fj.energy.2022.126543&partnerID=40&md5=98ef2a41e622e627ad7a1e8b07f59e11,Dc-dc converter; Drift free P&O method; Dynamic condition; Maximum power tracking; PEMFC system Al-Amyal F.; Számel L.; Hamouda M.,An enhanced direct instantaneous torque control of switched reluctance motor drives using ant colony optimization,2023,Ain Shams Engineering Journal,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85138586394&doi=10.1016%2fj.asej.2022.101967&partnerID=40&md5=8c007b8467e5bb1166667e358e9fc157,Direct instantaneous torque control; Multistage ant colony optimization; Switched reluctance motors; Torque profile improvement Hollweg G.V.; Khan S.A.; Chaturvedi S.; Fan Y.; Wang M.; Su W.,"Grid-Connected Converters: A Brief Survey of Topologies, Output Filters, Current Control, and Weak Grids Operation",2023,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159348754&doi=10.3390%2fen16093611&partnerID=40&md5=c53f5422fdb43ab983a42b15660c2949,active damping; current control; grid-connected converters; LCL; output filters; passive damping; topologies; weak grids Nagarajan K.; David A.J.G.,Investigation of bidirectional converter utilizing battery energy storage for an isolated load system,2023,International Journal of Power Electronics and Drive Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150204310&doi=10.11591%2fijpeds.v14.i2.pp1001-1010&partnerID=40&md5=ae551b3033efe17b025e9f3fd17dbb91,Asynchronous generator; Battery energy storage system; Bidirectional converters; Hybrid power; Photovoltaic; PI controller Demirdelen T.; Alıcı H.; Esenboğa B.; Güldürek M.,Performance and Economic Analysis of Designed Different Solar Tracking Systems for Mediterranean Climate,2023,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85160626697&doi=10.3390%2fen16104197&partnerID=40&md5=4b3d41e60f1cc01049be26d4fafaeda7,cost analysis; renewable energy; solar energy; solar photovoltaic; solar tracker Altbawi S.M.A.; Mokhtar A.S.B.; Khalid S.B.A.; Husain N.; Yahya A.; Haider S.A.; Alsisi R.H.; Moin L.,Optimal Control of a Single-Stage Modular PV-Grid-Driven System Using a Gradient Optimization Algorithm,2023,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85147854566&doi=10.3390%2fen16031492&partnerID=40&md5=c08ad9c999905c8dfa8f0fe4ac5a6eba,DC voltage; feedforward decoupling control strategy; grid-connected microgrid; power quality; voltage source inverter (VSI) Alhmoud L.,Why Does the PV Solar Power Plant Operate Ineffectively?,2023,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85160671100&doi=10.3390%2fen16104074&partnerID=40&md5=4f1de063145b8ccbc1384bf02abe9106,degradation; IAM; inverter; LID; optical; panel; PID; PV losses; shading; soiling Raja S.; Rathinakumar M.,Transient Analysis of the Fuzzy Logic-based Speed Control of a Three-phase BLDC Motor,2023,"Engineering, Technology and Applied Science Research",https://www.scopus.com/inward/record.uri?eid=2-s2.0-85166155094&doi=10.48084%2fetasr.5419&partnerID=40&md5=3b185a3189641d462d5d073948d3ff6a,Brushless DC Motor (BLDCM); Field Programmable Gate Array (FPGA); fuzzy logic; peak overshoot; Pulse Width Modulation (PWM); steady state error; transients de Brito M.A.G.; Martines G.M.S.; Volpato A.S.; Godoy R.B.; Batista E.A.,Current Sensorless Based on PI MPPT Algorithms,2023,Sensors,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85160430064&doi=10.3390%2fs23104587&partnerID=40&md5=4403e2fc42226a6e5c4be09ab570dade,controllers; MPPT; reduced cost; sensorless Saleem O.; Ali S.; Iqbal J.,Robust MPPT Control of Stand-Alone Photovoltaic Systems via Adaptive Self-Adjusting Fractional Order PID Controller,2023,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164840687&doi=10.3390%2fen16135039&partnerID=40&md5=5e8ea6453689dd97f7957db45f00a5bd,buck-boost converter; fractional order PID control; maximum power extraction; online adaptation law; photovoltaic system; self-adjusting orders Hou S.; Zhu W.,Dynamic Reconfiguration Method of Photovoltaic Array Based on Improved HPSO Combined with Coefficient of Variation,2023,Electronics (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163895620&doi=10.3390%2felectronics12122744&partnerID=40&md5=5d77c7267ee5a9e76cae5a05321640a9,coefficient of variation; improved hybrid particle swarm optimization algorithm; partial shading; photovoltaic power generation; TCT photovoltaic array reconfiguration Ghazali A.K.; Hassan M.K.; Radzi M.A.M.; As’arry A.,Optimizing Energy Harvesting: A Gain-Scheduled Braking System for Electric Vehicles with Enhanced State of Charge and Efficiency,2023,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163869132&doi=10.3390%2fen16124561&partnerID=40&md5=61a030b06f8aafb5345f6dfda0669ca4,electric vehicle; regenerative braking; state of charge (SOC); super-twisting sliding mode control Khavari F.; Ghamari S.M.; Abdollahzadeh M.; Mollaee H.,Design of a novel robust type-2 fuzzy-based adaptive backstepping controller optimized with antlion algorithm for buck converter,2023,IET Control Theory and Applications,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85152441044&doi=10.1049%2fcth2.12445&partnerID=40&md5=3cb293a7b21eef7293ae905e94ccea2b,controller; DC–DC power convertors; fuzzy control Hou G.; Huang T.; Huang C.,Flexibility improvement of 1000 MW ultra-supercritical unit under full operating conditions by error-based ADRC and fast pigeon-inspired optimizer,2023,Energy,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85147559711&doi=10.1016%2fj.energy.2023.126852&partnerID=40&md5=014e06f768b20360302303872d8a703b,Error-based ADRC; Flexibility; Full operating conditions; Pigeon-inspired optimizer; Two-stage optimization; Ultra-supercritical unit Euldji R.; Rebhi R.; Alkhafaji M.A.; Ikumapayi O.M.; Akinlabi E.T.; Akinlabi S.A.; Mohsen K.S.; Menni Y.,Improved Path Tracking Control in Mobile Robots Using a Hybrid FOPID Controller with Backstepping Technique: An Experimental Study,2023,Journal Europeen des Systemes Automatises,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164936707&doi=10.18280%2fjesa.560201&partnerID=40&md5=e63ffa847f58adf4b7c6c7186aa6e73b,Arduino mega; complex environment; experimental study; intelligent robust controller; serial communication protocol Kishore D.J.K.; Mohamed M.R.; Sudhakar K.; Peddakapu K.,Swarm intelligence-based MPPT design for PV systems under diverse partial shading conditions,2023,Energy,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143802333&doi=10.1016%2fj.energy.2022.126366&partnerID=40&md5=6a79fb4f920f6a238c429531e908af3a,Partial shading condition (PSC); Particle swarm optimization (PSO); Photovoltaic (PV); Salp swarm optimization (SSA); Swarm intelligence; Teaching learning-based artificial bee colony (TLABC) Pathak P.K.; Yadav A.K.; Alvi P.A.,Reduced oscillations based perturb and observe solar maximum power point tracking scheme to enhance efficacy and speed of a photovoltaic system,2023,Journal of Engineering Research (Kuwait),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85174537455&doi=10.36909%2fjer.13569&partnerID=40&md5=28ff6d5144520206fd92fc3548ff9798,Boost Converter; Grid Integration; Reduced Oscillations Based Perturb and Observe (ROP&O) MPPT Technique; Solar Photovoltaic (PV) System Lins A.W.; Krishnakumar R.,Tuning of PID controller for a PV-fed BLDC motor using PSO and TLBO algorithm,2023,Applied Nanoscience (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124510088&doi=10.1007%2fs13204-021-02272-x&partnerID=40&md5=3bd17c73b9dad8146b4b3ee5461ab1bc,BLDC motor; Electric vehicle (EV); Solar energy; Speed regulation; Teacher learning-based optimization algorithm (TLBO) Golla M.; Thangavel S.; Simon S.P.; Padhy N.P.,An Enhancement of Power Quality With Efficient Active Power Transfer Capability in a PV-BSS-Fed UAPF for Microgrid Realization,2023,IEEE Systems Journal,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132714325&doi=10.1109%2fJSYST.2022.3179182&partnerID=40&md5=c96a642a64335dc2d2fd2903730ae678,Active power transfer capability; microgrid; photovoltaic and battery storage system (PV-BSS); power quality; renewable energy sources (RESs); universal active power filter (UAPF) Rivadulla G.A.T.; Apolinario G.F.D.G.; Pacis M.C.,Optimizing Hybrid Microgrid Power Systems for Local Power Distribution: A Study on Combined Photovoltaic and Fuel Cell Systems in the Philippines,2023,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168783621&doi=10.3390%2fen16165906&partnerID=40&md5=14c321516b84fc8906d10c3a7c21fd95,distribution system; fuel cell; hybrid microgrid power system; IEEE-14 bus test system; load forecast; local power distribution system; photovoltaic energy; renewable energy; Taguchi method; voltage-sourced converter Devaraj V.; Kumaresan M.,Load Frequency Control of Modern Interconnected Power System Using SCSO-SNN Approach,2023,International Journal of Intelligent Systems and Applications in Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164529650&partnerID=40&md5=982d081a9113bf750ea8fdf89397ab20,Converter; Hybrid; Load frequency; Photovoltaic system; PID controller and solar field; Power plant; Wind Turbine Sachan S.; Swarnkar P.,Investigations on meta-heuristic algorithms for intelligent speed regulation of mobile robot,2023,Results in Control and Optimization,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159181647&doi=10.1016%2fj.rico.2023.100232&partnerID=40&md5=652baaca160da329885757a181c5e6bc,Artificial intelligence (AI); Firefly algorithm (FFA); Genetic algorithm (GA); Grey wolf optimization (GWO); Mobile robots; Particle swarm optimization (PSO) Smadi A.A.; Khoucha F.; Amirat Y.; Benrabah A.; Benbouzid M.,Active Disturbance Rejection Control of an Interleaved High Gain DC-DC Boost Converter for Fuel Cell Applications,2023,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85147842181&doi=10.3390%2fen16031019&partnerID=40&md5=32ef45b784cbf8c7d285881e490aa826,DC-DC boost converter; linear active disturbance rejection control (LADRC); proton exchange membrane fuel cell (PEMFC); robust control Zandabad Y.Y.; Fazel S.S.,Soft-switching buck/boost full-bridge three-port converter for DC/DC applications,2023,"Engineering Science and Technology, an International Journal",https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150846449&doi=10.1016%2fj.jestch.2023.101382&partnerID=40&md5=98f45575bb76d9c4d6eb0f7655f1d8fd,Energy storage; LLC converter; Phase shift; PWM control; Three-port converter Ullah Z.; Wang S.; Lai J.; Azam M.; Badshah F.; Wu G.; Elkadeem M.R.,Implementation of various control methods for the efficient energy management in hybrid microgrid system,2023,Ain Shams Engineering Journal,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85138547958&doi=10.1016%2fj.asej.2022.101961&partnerID=40&md5=9874046ddc30735bf356216e74c84c58,Artificial neural network; Energy management system; Fuzzy logic; Maximum power point tracking; Microgrid; Sliding mode controller Chakravarthi M.K.; Venkatesan N.; Kumar Y.V.P.; Pradeep D.J.; Reddy C.P.,Adaptive Type-1 Fuzzy Controller for Lag-Dominant First and Second Order Nonlinear Systems †,2023,Engineering Proceedings,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85186441840&doi=10.3390%2fASEC2023-16600&partnerID=40&md5=7e0c0fdadceb4b5e47717820510faf45,error performance index; lag-dominant systems; nonlinear systems; spherical tanks; type-1 fuzzy controller Shao J.; Zhang X.; Xi H.; Liu Z.,Multi-loop energy control method of linear active disturbance rejection for solar-powered UAVs; [太 阳 能 无 人 机 线 性 自 抗 扰 多 环 路 能 源 控 制],2023,Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164302325&doi=10.7527%2fS1000-6893.2022.27812&partnerID=40&md5=e2c25a851ba9ac7903c804ddf29d6e6c,energy control strategy; hybrid power; Linear Active Disturbance Rejection Control (LADRC); multi-loop control; solar power; UAVs Ghosh S.; Singh A.K.; Singh R.; Maurya R.; Singh S.N.; Yang G.,Intelligent control of integrated on-board charger with improved power quality and reduced charging transients,2023,ISA Transactions,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140956950&doi=10.1016%2fj.isatra.2022.10.005&partnerID=40&md5=e08edad0e2f79d5f1b4c00befbdf88a7,Adaptive fuzzy PI controller; Artificial neural network; Constant current charging; Constant voltage charging; Integrated on-board charger Kadhem B.T.; Harden S.S.; Al-Atbee O.Y.K.; Abdulhassan K.M.,Improve the energy efficiency of PV systems by installing a soft switching boost converter with MPPT control,2023,International Journal of Power Electronics and Drive Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150206191&doi=10.11591%2fijpeds.v14.i2.pp1055-1069&partnerID=40&md5=365c4ee3c0aba4dfa6de2218e34e6874,DC-DC boost converter soft; MPPT; P&O; Photovoltaic; PWM converter; switching El-Khatib M.F.; Sabry M.-N.; El-Sebah M.I.A.; Maged S.A.,Hardware-in-the-loop testing of simple and intelligent MPPT control algorithm for an electric vehicle charging power by photovoltaic system,2023,ISA Transactions,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85147214212&doi=10.1016%2fj.isatra.2023.01.025&partnerID=40&md5=928d204d16e70d8e9d86c1f7cda3dace,Artificial neural network; Electric vehicle battery; Fuzzy logic controller; Particle swarm optimization; Photovoltaic; Simplified universal intelligent PID controller Ali Z.M.; Al-Dhaifallah M.; Al-Gahtani S.F.; Muranaka T.,A new maximum power point tracking method for PEM fuel cell power system based on ANFIS with modified manta ray foraging algorithm,2023,Control Engineering Practice,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150391186&doi=10.1016%2fj.conengprac.2023.105481&partnerID=40&md5=4eb08befc027e15aefa755cef655bb8c,ANFIS; DMRFO algorithm; INC controller; MPPT method; PEMFC Altawil I.; Momani M.A.; Al-Tahat M.A.; Al Athamneh R.; Al-Saadi M.A.; Albataineh Z.,Optimization of fractional order PI controller to regulate grid voltage connected photovoltaic system based on slap swarm algorithm,2023,International Journal of Power Electronics and Drive Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150213681&doi=10.11591%2fijpeds.v14.i2.pp1184-1200&partnerID=40&md5=165e0a65c871226c1e97844165d1c7bf,Fractional order controller; Grid voltage; PI controller; PV system; Salp swarm algorithm Aloo L.A.; Kihato P.K.; Kamau S.I.; Orenge R.S.,Interleaved boost converter voltage regulation using hybrid ANFIS-PID controller for off-grid microgrid,2023,Bulletin of Electrical Engineering and Informatics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150875607&doi=10.11591%2feei.v12i4.4906&partnerID=40&md5=61e7557a30e1bc765feb8ff51d2c8013,ANFIS-PID; Interleaved boost converter; Photovoltaic; Voltage regulation; Wind Castillo-Rojas W.; Medina Quispe F.; Hernández C.,Photovoltaic Energy Forecast Using Weather Data through a Hybrid Model of Recurrent and Shallow Neural Networks,2023,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164773110&doi=10.3390%2fen16135093&partnerID=40&md5=88354c1c595f029085ebfd967a6a3ded,photovoltaic energy; photovoltaic energy prediction; predictive hybrid model; recurrent neural networks; shallow neural networks Anitha P.; Kumar K.K.; Kamaraja A.S.,An Improved Design and Performance Enhancement of Y-Source DC-DC Boost Combined Phase Shifted Full Bridge Converter for Electric Vehicle Battery Charging Applications,2023,Journal of Electrical Engineering and Technology,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148496130&doi=10.1007%2fs42835-023-01414-1&partnerID=40&md5=85319e646cc12d73c1aca54f651e2065,Continuous conduction cycle; Incremental conductance MPPT method; Phase-shifted full-bridge converter; Y-source boost converter; Zero voltage switching Baruch E.; Vered Y.; Plat H.; Bucher I.,Automatic traveling wave excitation of structures with imperfect cyclic symmetry,2023,Mechanical Systems and Signal Processing,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85135331178&doi=10.1016%2fj.ymssp.2022.109616&partnerID=40&md5=5bc7d800cdf5b89374738d978c3d197d,Autoresonance; Extremum seeking; Traveling waves; Ultrasonic motors; Wave control Senapati M.K.; Pradhan C.; Calay R.K.,A computational intelligence based maximum power point tracking for photovoltaic power generation system with small-signal analysis,2023,Optimal Control Applications and Methods,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117155717&doi=10.1002%2foca.2798&partnerID=40&md5=995225ef03d4f6e3c1478e82a2fd3d54,maximum power point tracking; modified invasive weed optimization; perturb and observe; photovoltaic; small-signal analysis Mendi B.; Pattnaik M.; Srungavarapu G.,"Design, analysis, and adaptive maximum power point tracking control of small-scale wind turbine system",2023,International Journal of Circuit Theory and Applications,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85151082813&doi=10.1002%2fcta.3593&partnerID=40&md5=ecbd892da59a42742093915b4a2884dc,adaptive step size; maximum power point tracking; permanent magnet synchronous generator; variable speed wind power generation system; wind turbine system Fantin Irudaya Raj E.; Appadurai M.; Lurthu Pushparaj T.; Chithambara Thanu M.,Wind turbines with aramid fiber composite wind blades for smart cities like urban environments: Numerical simulation study,2023,MRS Energy and Sustainability,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85145505860&doi=10.1557%2fs43581-022-00060-w&partnerID=40&md5=f8d5abc1873fa97c1c5cf65e580085f4,composite; computation; efficiency; energy generation; renewable; simulation; structural; sustainability Hosseinpour M.; Kholousi A.,Design and Analysis of LCL-type Grid-Connected PV Power Conditioning System Based on Positive Virtual Impedance Capacitor-Current Feedback Active Damping,2023,Journal of Solar Energy Research,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85160862780&doi=10.22059%2fjser.2023.357089.1286&partnerID=40&md5=4a78976d1c37a8b91043fd1f9e703541,Active damping; Grid-connected inverter; LCL filter; PV Power System; Solar array Karmakar A.; Sadhu P.K.; Das S.,A CMPA based cost-effective photovoltaic power generation system and utilization,2023,Microsystem Technologies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161640659&doi=10.1007%2fs00542-023-05483-0&partnerID=40&md5=7347fb16b0eb385c2feb4506218fee0a, Uswarman R.; Munawar K.; Ramli M.A.M.; Bouchekara H.R.E.H.; Hossain M.A.,Maximum Power Point Tracking in Photovoltaic Systems Based on Global Sliding Mode Control with Adaptive Gain Scheduling,2023,Electronics (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149942917&doi=10.3390%2felectronics12051128&partnerID=40&md5=537301e1e87b81fa460a5a0d18604080,adaptive gain scheduling; boost converter; global sliding mode control; Lyapunov stability; maximum power point tracking; photovoltaic system André S.; Silva F.; Pinto S.; Miguens P.,Novel Incremental Conductance Feedback Method with Integral Compensator for Maximum Power Point Tracking: A Comparison Using Hardware in the Loop,2023,Applied Sciences (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85152685310&doi=10.3390%2fapp13074082&partnerID=40&md5=8c46da6f5a3cde07b0e4a15ca15a4d45,HIL; integral feedback conductance; MPPT; photovoltaic Srisailam C.; Manjula M.,Optimized FOPID Controller for Transient Stability Improvement in a Microgrid with Energy Storage,2023,SSRG International Journal of Electrical and Electronics Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85153279677&doi=10.14445%2f23488379%2fIJEEE-V10I2P103&partnerID=40&md5=64331cd0fd91f26a2bda3c0f0bb47c6f,DFIG based WECS; ESS; GWO-assisted FOPID controller; Higher order boost converter; Isolated BDC; PI controller; PV system Aripriharta A.; Bayuanggara T.W.; Fadlika I.; Sujito S.; Afandi A.N.; Mufti N.; Diantoro M.; Horng G.-J.,COMPARISON OF QUEEN HONEY BEE COLONY MIGRATION WITH VARIOUS MPPTS ON PHOTOVOLTAIC SYSTEM UNDER SHADED CONDITIONS,2023,"EUREKA, Physics and Engineering",https://www.scopus.com/inward/record.uri?eid=2-s2.0-85166219802&doi=10.21303%2f2461-4262.2023.002836&partnerID=40&md5=d02d269c4f681b2c532273589777eec5,boost converter; convergence time; global MPP; heuristic; IC MPPT; local MPP; PSO MPPT; PV system; QHBM MPPT; tracking efficiency Rashid Z.; Amjad M.; Anjum W.,Indirect grid power factor tuning with PV-STATCOM using shift mode phase locking strategy,2023,Electrical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85146852054&doi=10.1007%2fs00202-023-01734-5&partnerID=40&md5=df1dac15d27f9a2f5dc5232d14dbd5fc,Active compensation; FACTS; MPPT algorithm; Power factor; PV; Reactive power control Irwanto M.; Nugraha Y.T.; Hussin N.; Nisja I.,EFFECT OF TEMPERATURE AND SOLAR IRRADIANCE ON THE PERFORMANCE OF 50 HZ PHOTOVOLTAIC WIRELESS POWER TRANSFER SYSTEM,2023,Jurnal Teknologi,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150041868&doi=10.11113%2fjurnalteknologi.v85.18872&partnerID=40&md5=2dc4ba4bf917a8027548bac5919f4e6c,Magnetic relay coil; Photovoltaic; Solar irradiance; Temperature; Wireless power transfer Shi X.; Li G.,Improved P&O control strategy based on extended state observer and fractional order PID; [基于ESO和分数阶PID的改进P&O控制策略],2023,Electric Power Engineering Technology,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85183985031&doi=10.12158%2fj.2096-3203.2023.03.020&partnerID=40&md5=f407502653870de020769fef4f5b449e,fractional order proportion integration differentiation (FOPID) contorl; linear expansion state observer (LESO); maximum power point (MPP); perturbation observation method (P&O); power correction; variable step-size Hichem L.; Amar O.; Leila M.,Optimized ANN-fuzzy MPPT controller for a stand-alone PV system under fast-changing atmospheric conditions,2023,Bulletin of Electrical Engineering and Informatics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150894266&doi=10.11591%2feei.v12i4.5099&partnerID=40&md5=cd199c0c3648c401e9dfce4c632b5b6a,Artificial neural network; DC-DC boost converter; Fuzzy logic technique; Hybrid method artificial neural; Maximum power point tracking; network-fuzzy; Solar panel MohamedZain A.O.; Hou L.W.; Chua H.; Yap K.; Boon L.K.,The Design and Fabrication of Multiple-Transmitter Coils and Single-Receiver Coils for a Wireless Power Transfer System to Charge a 3s LiPo Drone’s Battery,2023,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159374131&doi=10.3390%2fen16093629&partnerID=40&md5=df7812ca159b214e461beca26bdb13fb,drones; inductive power transfer; lithium polymer battery; wireless power receiver; wireless power transfer; wireless power transmitter Ding N.; Cai Y.; Deng F.,Temperature-based thermo-electric coupling maximum power point tracking algorithm for thermoelectric generation systems under transient conditions,2023,Applied Thermal Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85158002159&doi=10.1016%2fj.applthermaleng.2023.120684&partnerID=40&md5=86bf254213cdeed72ac39b22f8292142,Maximum power point tracking; Renewable energy harvesting; Thermoelectric generator; Transient working condition Vineeth Kumar P.K.; Jijesh J.J.,Comparative Analysis of Bio-Inspired Maximum Power Point Tracking Algorithms for Solar Photovoltaic Applications,2023,International Journal of Intelligent Systems and Applications in Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149737018&partnerID=40&md5=b475ae59aa3d9fd50a7d8cac4f0543f9,BI-based MPPT; Maximum Power Point Tracking; Partial Shading; Solar Photovoltaic System Matsumoto K.; Ikeda R.; Sebe H.; Kuroki N.; Numa M.; Kanemoto D.; Hirose T.,Fully-integrated switched-capacitor voltage boost converter with digital maximum power point tracking for low-voltage energy harvesting,2023,Japanese Journal of Applied Physics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148687576&doi=10.35848%2f1347-4065%2facb77e&partnerID=40&md5=aad1e445b9841e09e46575b0befa5d08,digital maximum power point tracking; energy harvesting; internet of things; photovoltaic cell; power management system; switched capacitor; voltage boost converter Subramaniam U.; Reddy K.S.; Kaliyaperumal D.; Sailaja V.; Bhargavi P.; Likhith S.,A MIMO–ANFIS-Controlled Solar-Fuel-Cell-Based Switched Capacitor Z-Source Converter for an Off-Board EV Charger,2023,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149184487&doi=10.3390%2fen16041693&partnerID=40&md5=f5a3e65eac43820118a862553d1d925d,adaptive neuro fuzzy inference system (ANFIS); battery; constant current–constant voltage (CC-CV); electric vehicle (EV); fuel cell; line regulation; load regulation; micro-grid; small-signal analysis (SSA); solar cell; state-space modelling; switched capacitor Z-source converter (SCZSC) Abdeldjalil D.; Boualam B.; Miloud B.; Abderrahmane K.; Ahmed B.; Nouar A.; Saad M.; Abdellatif R.,A Comparative Experimental Investigation of MPPT Controls for Variable Speed Wind Turbines,2023,International Journal of Electrical and Computer Engineering Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168300004&doi=10.32985%2fijeces.14.6.10&partnerID=40&md5=dc78f9ffdd1ba0900fd675e2c5d4bee6,Dspace; Maximum power point tracking (MPPT); Optimal Torque Control (OTC); Real time control; Wind energy conversion system (WECS) Memon A.A.; Usman; Khan W.A.; Muhammad T.,Numerical investigation of photovoltaic thermal energy efficiency improvement using the backward step containing Cu-Al2O3 hybrid nanofluid,2023,Alexandria Engineering Journal,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161514152&doi=10.1016%2fj.aej.2023.06.003&partnerID=40&md5=35100a183960aa371d76b7ec39c750c7,Backward Step; Cu-Al2O3 Hybrid Nanofluids; Electrical Efficiency; Photovoltaic Thermal System Chauhan U.; Chhabra H.; Rani A.; Kumar B.; Singh V.,Efficient MPPT Controller for Solar PV System Using GWO-CS Optimized Fuzzy Logic Control and Conventional Incremental Conductance Technique,2023,Iranian Journal of Science and Technology - Transactions of Electrical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142239126&doi=10.1007%2fs40998-022-00569-3&partnerID=40&md5=095518e8f9f746a69a05f77e1688db72,Fuzzy logic; GWO-CS optimization; Incremental conductance; MPPT; Renewable energy; Solar PV system Ishrat Z.; Ali K.B.; Vats S.; Kumar S.,Optimizing Solar Energy Harvesting: Supervised Machine Learning-Driven Peak Power Point Tracking for Diverse Weather Conditions,2023,International Journal of Robotics and Control Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85184456527&doi=10.31763%2fijrcs.v3i4.1176&partnerID=40&md5=1c869b6b02b4bbdacaed984845ea9974,Matlab/Simulink; MxPPT; PV System (PVS); SGPRA Park I.; Jeon J.; Kim H.; Park T.; Jeong J.; Kim C.,A Thermoelectric Energy-Harvesting Interface With Dual-Conversion Reconfigurable DC-DC Converter and Instantaneous Linear Extrapolation MPPT Method,2023,IEEE Journal of Solid-State Circuits,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141604419&doi=10.1109%2fJSSC.2022.3214839&partnerID=40&md5=5b9c329a4d6b5dcf27e474c45ee10208,DC-DC converter; energy harvesting; maximum power point tracking (MPPT); thermoelectric generator (TEG); wireless sensor node (WSN) Gao P.; Pan H.,Model-free double fractional-order integral sliding mode control for permanent magnet synchronous motor based electric mopeds drive system,2023,IEICE Electronics Express,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85165222122&doi=10.1587%2felex.20.20230178&partnerID=40&md5=d3951d0d9bc29f0f70de7d7651927f77,double fractional-order integral; electric mopeds; model-free; sliding mode control Fan W.; Shi Y.; Chen Y.,A Method for CM EMI Suppression on PFC Converter Using Lossless Snubber with Chaotic Spread Spectrum,2023,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85153789171&doi=10.3390%2fen16083583&partnerID=40&md5=48ae18a9240e86a599f0d6aeff0a240f,chaotic spread spectrum; common-mode electromagnetic interference; lossless snubber; PFC converter; power spectral density Kumari P.; Kumar N.; Panigrahi B.K.,A Framework of Reduced Sensor Rooftop SPV System Using Parabolic Curve Fitting MPPT Technology for Household Consumers,2023,IEEE Transactions on Consumer Electronics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139472380&doi=10.1109%2fTCE.2022.3209974&partnerID=40&md5=5536578faa20bdcc148f7c3385d018a4,curve fitting; MPPT; PCHC; rooftop SPV; solar photovoltaic Liu Q.; Xu G.; Li Z.; Jia Z.; Gao Y.; Li Y.; Yang Y.,Reliability Analysis of a Three-Port Converter with a Semi-Regulated Bus Voltage Structure with an MPPT Function for Near-Space Vehicles,2023,Journal of Electrical Engineering and Technology,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143768590&doi=10.1007%2fs42835-022-01319-5&partnerID=40&md5=1ff5a6398519745dee301b5bb4eca2ef,Near-space vehicles; Reliability; Semi-regulated bus voltage; Three-port converter Ali M.; Chandrarathna S.C.; Moon S.-Y.; Jana M.S.; Shafique A.; Qraiqea H.; Lee J.-W.,A Compact and Efficient Boost Converter in a 28 nm CMOS with 90 mV Self-Startup and Maximum Output Voltage Tracking ZCS for Thermoelectric Energy Harvesting,2023,Sensors,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164846060&doi=10.3390%2fs23136243&partnerID=40&md5=fc915bfa628742133c707863a6352d96,boost converter; maximum power point tracking; self-startup; thermoelectric generator; wearable electronics; zero current switching Rao R.N.; Sreenivasulu M.; Ramakrishna B.,Voltage regulation of DC micro grid system using PV and battery coupled SEPIC converter,2023,International Journal of Power Electronics and Drive Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144919710&doi=10.11591%2fijpeds.v14.i1.pp41-50&partnerID=40&md5=1ae0503df95bc7270ee59d2c0c4e8f5f,Buck boost converter; DC micro grid; Photovoltaic; PID controller; SEPIC converter Mahjoub S.; Chrifi-Alaoui L.; Drid S.; Derbel N.,Control and Implementation of an Energy Management Strategy for a PV–Wind–Battery Microgrid Based on an Intelligent Prediction Algorithm of Energy Production,2023,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85153675634&doi=10.3390%2fen16041883&partnerID=40&md5=8224aed47c8a25dd68890f3247172d0d,double-input single-output converter; energy management; experimental validation; hybrid renewable energy system (HRES); prediction Chandrasekharan S.; Subramaniam S.; Veerakgoundar V.,Honey badger optimization algorithm based maximum power point tracking for solar photovoltaic systems,2023,Electric Power Systems Research,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85153867526&doi=10.1016%2fj.epsr.2023.109393&partnerID=40&md5=3c566a74da52569d9948b6b307620d5c,Boost converter; Honey badger algorithm; Maximum PowerPoint tracking; Partial shading; Particle swarm optimization; Photovoltaic system Nagarajan K.; David A.J.G.,Self-excited asynchronous generator with PV array in detained autonomous generation systems,2023,International Journal of Power Electronics and Drive Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144935340&doi=10.11591%2fijpeds.v14.i1.pp358-368&partnerID=40&md5=918579a49449ecc8beb7129dbd16cda6,Asynchronous generator; DC-DC converter; Hybrid wind solar; MATLAB/Simulink; Reliable electricity; Renewable energy; Self-excited Bouarroudj N.; Houam Y.; Djari A.; Feliu-Batlle V.; Lakhdari A.; Benlahbib B.,A Linear Quadratic Integral Controller for PV-Module Voltage Regulation for the Purpose of Enhancing the Classical Incremental Conductance Algorithm,2023,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161714513&doi=10.3390%2fen16114532&partnerID=40&md5=c3429053e2b65b67423723c9af92587f,IC-algorithm; IC-LQI algorithm; MPPT; PV-system Corrêa H.P.; Vieira F.H.T.,Hybrid sensor-aided direct duty cycle control approach for maximum power point tracking in two-stage photovoltaic systems,2023,International Journal of Electrical Power and Energy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139213353&doi=10.1016%2fj.ijepes.2022.108690&partnerID=40&md5=7d529716946c2d267a0c2f20eacf78b9,Direct duty cycle control; Efficiency; Hybrid method; Maximum power point tracking; Photovoltaic system Endiz M.S.,Comparative Analysis of P&O and IC MPPT Techniques under Different Atmospheric Conditions,2023,El-Cezeri Journal of Science and Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85147833679&doi=10.31202%2fecjse.1101526&partnerID=40&md5=5b817976812dd55733de15797b941037,irradiation; MPPT; photovoltaic systems; Solar energy; temperature Baek D.; Lee H.G.,On-Chip Energy Harvesting System with Storage-Less MPPT for IoTs,2023,Journal of Electrical Engineering and Technology,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149011329&doi=10.1007%2fs42835-023-01436-9&partnerID=40&md5=345c5512f47ef8cb5f1debc0e3a6490c,ASIC; CPLD; Internet of things; MPPT; Photovoltaic; Power management unit Zafar M.H.; Abou Houran M.; Mansoor M.; Khan N.M.; Moosavi S.K.R.; Khan M.K.; Akhtar N.,A Novel MPPT Controller Based on Mud Ring Optimization Algorithm for Centralized Thermoelectric Generator under Dynamic Thermal Gradients,2023,Applied Sciences (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85152579997&doi=10.3390%2fapp13074213&partnerID=40&md5=e757b5741291593c132af85c34f928bb,heat recovery; mud ring algorithm; power extraction; swarm intelligence; thermoelectric generation Hassan G.S.; Ali N.J.; Abdulsahib A.K.; Mohammed F.J.; Gheni H.M.,A missing data imputation method based on salp swarm algorithm for diabetes disease,2023,Bulletin of Electrical Engineering and Informatics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85146479791&doi=10.11591%2feei.v12i3.4528&partnerID=40&md5=8d69e2b10b9c9b6f792571a265755fe4,Classification; Diabetes disease; Machine learning; Missing values; Salp swarm algorithm Olvera-Romero G.D.; Praga-Alejo R.J.; González-González D.S.,MODELING AND OPTIMIZATION OF AN INTERVAL TYPE 2 FUZZY LOGIC SYSTEM FOR A CERAMIC COATING PROCESS,2023,International Journal of Industrial Engineering : Theory Applications and Practice,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85170647208&doi=10.23055%2fijietap.2023.30.4.8973&partnerID=40&md5=514e19fb7ff18c4fd560bc3753b483b4,Ceramic Coating Process; Genetic Algorithm; Interval Type 2 Fuzzy Logic; Modeling Tightiz L.; Mansouri S.; Zishan F.; Yoo J.; Shafaghatian N.,Maximum Power Point Tracking for Photovoltaic Systems Operating under Partially Shaded Conditions Using SALP Swarm Algorithm,2022,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141883008&doi=10.3390%2fen15218210&partnerID=40&md5=d0ce235b80e8260777185b869005866a,maximum power point tracking; partial shade; photovoltaic system; SALP swarm algorithm Yun E.J.; Park J.T.; Yu C.G.,An maximum power point tracking interface circuit for low-voltage DC-type energy harvesting sources,2022,Bulletin of Electrical Engineering and Informatics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139145613&doi=10.11591%2feei.v11i6.4124&partnerID=40&md5=788c390cfbd0362ee8a0a9e1114009e5,Energy harvesting; Fractional open-circuit voltage; MPPT; Photovoltaic energy; Thermoelectric energy Ben Halima N.; Ben Halima N.; Oualha A.,Fuzzy Logic Energy Management Based on Wind Turbine for Standalone Application,2023,IETE Journal of Research,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85178063066&doi=10.1080%2f03772063.2023.2284949&partnerID=40&md5=1f9a8bd36e1dbf79269e4f12ef618409,Batteries; Energy management; Fuzzy logic; Standalone; Supervisor; Wind turbine Kumar R.S.; Reddy C.S.R.; Chandra B.M.,Optimal performance assessment of intelligent controllers used in solar-powered electric vehicle,2023,Electrical Engineering and Electromechanics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85152089867&doi=10.20998%2f2074-272X.2023.2.04&partnerID=40&md5=a979beaf0d4dee1aa5698cafeefdd404,artificial neural network controller; fuzzy logic controller; proportional-integral derivative controller; solar power Chao K.-H.; Huang B.-Z.,Quantitative Design for the Battery Equalizing Charge/Discharge Controller of the Photovoltaic Energy Storage System,2022,Batteries,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144682136&doi=10.3390%2fbatteries8120278&partnerID=40&md5=db9eac1f827869c1fff776caaa7e20c0,bidirectional buck–boost soft-switching converter; digital signal processor (DSP); energy storage system (ESS); equalizing charge/discharge; maximum power point tracking (MPPT); photovoltaic module array (PVMA); quantitative design controller Zeynal H.; Zakaria Z.; Pourveis B.,An efficient MPPT based photovoltaic control model considering environmental parameters,2022,International Journal of Power Electronics and Drive Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139962685&doi=10.11591%2fijpeds.v13.i4.pp2432-2439&partnerID=40&md5=12b0c159068ab6dd350bdeecb8c261f4,Incremental conductance method; MATLAB/Simulink; Maximum power point tracking; Photovoltaic system; Radiation and temperature loop Kumar M.; Panda K.P.; Rosas-Caro J.C.; Valderrabano-Gonzalez A.; Panda G.,Comprehensive Review of Conventional and Emerging Maximum Power Point Tracking Algorithms for Uniformly and Partially Shaded Solar Photovoltaic Systems,2023,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85151568905&doi=10.1109%2fACCESS.2023.3262502&partnerID=40&md5=12272ab0e6b7fdcc6a9b4676efb11e5f,global maximum power point (GMPP); Maximum power point tracking (MPPT) techniques; partial shading condition (PSC); renewable energy source; solar photovoltaics (PV) Kar B.N.; Samuel P.; Mallick A.; Pradhan J.K.,Grid-Connected Solar PV Fed BLDC Motor Drive for Water Pumping System,2023,Distributed Generation and Alternative Energy Journal,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85167414545&doi=10.13052%2fdgaej2156-3306.3856&partnerID=40&md5=3a927c8fbf1fb22ae125d32bc287ad87,Brushless DC motor; power quality; solar photovoltaic; unidirectional power flow control; water pump Joshua K.P.; Rangasamy L.V.; Reddy C.V.K.; Veeruchinnan R.,Energy management of solar photovoltaic fed water pumping system based BLDC motor drive using NBO–SDRN approach,2023,Electrical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85178213133&doi=10.1007%2fs00202-023-02102-z&partnerID=40&md5=b9a4aae7debc82c14247f8c13fb6cf5b,Brushless DC (BLDC); Domestic water supply; Maximum power point tracking (MPPT); SEPIC; SPV; Water pumping systems (WPS) Boucheriette W.; Mechgoug R.; Benguesmia H.,OPTIMIZATION OF FRACTIONAL ORDER PI CONTROLLER USING META-HEURISTICS ALGORITHMS APPLIED TO MULTILEVEL INVERTER FOR GRID-CONNECTED PV,2023,Diagnostyka,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85174420160&doi=10.29354%2fdiag%2f171430&partnerID=40&md5=4446cc1a08a29b6c9a51d548217cc58c,ABC; Fractional Order PI; GWO; Meta-heuristic; MLI inverter; PSO; THD Wang C.-C.; Tolentino L.K.S.; Wu H.-C.; Sangalang R.G.B.; Jose O.L.J.A.; Lin T.-H.,A negative voltage generator with 4-stage configurable parallel switching for smart window film applications,2023,International Journal of Electronics Letters,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164495950&doi=10.1080%2f21681724.2023.2224067&partnerID=40&md5=7eb0e7857f94fd24427e3ddbfe455530,4-phase clocking; charge pump; HV BCD; negative voltage generation; smart window film; stage-configurable Kamal Kumar U.; Janamala V.,Enhancement of Agriculture Feeder Performance by Optimal Sizing and Placing of Solar PV Tree through AEO-Based Optimization Technique,2023,International Journal of Electrical and Electronics Research,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85172452493&doi=10.37391%2fijeer.110322&partnerID=40&md5=eaba1cbc9d79d8b2eb460f5349989e50,Agriculture Feeder; Artificial Eco-System Algorithm; Renewable Energy; Solar PV System; Solar Tree Rathinamala S.; Manoharan S.; Chandrakala S.; Ramash Kumar K.,Performance Improvement of Hybrid System Using Bidirectional MIEC for Portable Device Charger,2023,Mathematical Problems in Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85174418521&doi=10.1155%2f2023%2f2482533&partnerID=40&md5=5b4e28fce639019bf6165d8eb0f0091e, Hachana O.; Meghni B.; Benamor A.; Toumi I.,Efficient PMSG wind turbine with energy storage system control based shuffled complex evolution optimizer,2022,ISA Transactions,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130769122&doi=10.1016%2fj.isatra.2022.05.014&partnerID=40&md5=b230726628e5b9b5de1fbcc09aeda354,Second order sliding mode control; Shuffled complex evolution; Super twisting algorithm; Total harmonic distortion; Variable speed wind turbine Wang C.-C.; Jose O.L.J.A.; Lou P.-Y.; Hsu C.-J.; Tolentino L.K.S.; Sangalang R.G.B.,Single-chip DC–DC buck converter design based on PWM with high-efficiency in light load,2023,International Journal of Electronics Letters,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130302640&doi=10.1080%2f21681724.2022.2068661&partnerID=40&md5=2502c34f5f9add699b6bfcd150cd1797,buck converter; DC-DC converter; high voltage; light load; PWM Abo-Khalil A.G.; El-Sharkawy I.I.; Radwan A.; Memon S.,"Influence of a Hybrid MPPT Technique, SA-P&O, on PV System Performance under Partial Shading Conditions",2023,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85146601788&doi=10.3390%2fen16020577&partnerID=40&md5=aa09c68ff34c0ae2de160f91361c1d82,global maximum power point (GMPP); local maximum power point (LMPP); perturbation and observation (P&O); simulated annealing (SA) Bharathidasan M.; Indragandhi V.; Aljafari B.,Hybrid Controlled Multi-Input DC/DC Converter for Electric Vehicle Application,2023,International Transactions on Electrical Energy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85154547113&doi=10.1155%2f2023%2f8308418&partnerID=40&md5=dbcbca0abe4635f4b9865374165f359f, Hamanah W.M.; Salem A.; Abido M.A.; Qwbaiban A.M.; Habetler T.G.,Solar Power Tower Drives: A Comprehensive Survey,2023,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103148048&doi=10.1109%2fACCESS.2021.3066799&partnerID=40&md5=8ab27e9663ad5ab08a9ef5b1b6e56593,concentrated solar power; electric drives; heliostat control system; power electronic converters; Renewable energy Thirupura Sundari K.; Umamaheswari M.G.; Sundaramoorthy S.,Linear Quadratic Regulator-Based PI Control of a Non-Ideal Quadratic Boost PFC Converter for Low-Power Wind Energy Conversion Systems Supplying Uninterruptible DC Power,2023,IETE Journal of Research,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127273998&doi=10.1080%2f03772063.2022.2048704&partnerID=40&md5=bcd2f6413015109cf2c7837e837974a6,Average current mode control (CMC); DC–DC quadratic boost converter (QBC); LQR-based PI control; Non-ideal mode; Proportional Integral (PI) controller; Wind energy conversion systems Ataullah H.; Iqbal T.; Khalil I.U.; Ali U.; Blazek V.; Prokop L.; Ullah N.,"Analysis of the Dual Active Bridge-Based DC-DC Converter Topologies, High-Frequency Transformer, and Control Techniques",2022,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143792369&doi=10.3390%2fen15238944&partnerID=40&md5=76b9cfb2d0ada84d75912e1a995b07c5,control techniques; DAB converter; high-frequency transformer; isolated converters; solid state transformer Vivekanandan S.; Siva Ramkumar M.,Comparative Analysis of SAZZ and ZETA Converter and MPPT Techniques in SPV,2023,Electric Power Components and Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85176247486&doi=10.1080%2f15325008.2023.2269922&partnerID=40&md5=3fd1c4512b2ff774ab33bc8dad7b75d0,IC; P&O; SAZZ; system Meghni B.; Benamor A.; Hachana O.; Azar A.T.; Boulmaiz A.; Saad S.; El-Kenawy E.-S.M.; Kamal N.A.; Fati S.M.; Bahgaat N.K.,Rooted Tree Optimization for Wind Turbine Optimum Control Based on Energy Storage System,2023,"Computers, Materials and Continua",https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141895365&doi=10.32604%2fcmc.2023.029838&partnerID=40&md5=1755f22ceb3224a6509e9c9bb5f47f41,direct power control (DPC); PMSG; proportional integral (PI); Rooted tree optimization (RTO) method; wind turbine (WT) Ben Regaya C.; Hamdi H.; Farhani F.; Marai A.; Zaafouri A.; Chaari A.,Real-time implementation of a novel MPPT control based on the improved PSO algorithm using an adaptive factor selection strategy for photovoltaic systems,2023,ISA Transactions,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85180587351&doi=10.1016%2fj.isatra.2023.12.024&partnerID=40&md5=b8fda9093725ac1bd59c3f90effff385,Adaptive factor selection strategy; MPPT controller; Multi swarm PSO “MSPSO”; Photovoltaic system; Real-time control Sachan S.; Swarnkar P.,Intelligent fractional-order sliding mode optimised control of surgical manipulator for healthcare system,2023,Electrical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85174063261&doi=10.1007%2fs00202-023-02052-6&partnerID=40&md5=e4d36dfad1f2953274ef2fefb24e4468,Digital simulator; Fractional-order SMC; GA; Robot-assisted surgery (RAS); Surgical robot manipulator; Type-2 fuzzy Soni A.K.; Jana K.C.; Gupta D.K.,Variable Step-size Adaptive Maximum Power Point Tracking Algorithm for Solar Cell Under Partial Shading Conditions,2023,IETE Journal of Research,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100020569&doi=10.1080%2f03772063.2020.1871425&partnerID=40&md5=725034ea4614c270907c6edf206b6250,Global maximum power point (GMPP); Global Peak area (GPA); I-V; Incremental conductance (IC); Maximum power point tracking (MPPT); P-V characteristic; Perturb and observe (P&O); Photovoltaic (PV) cell Hou T.; Wang S.,Research on the MPPT of Photovoltaic Power Generation Based on the CSA-INC Algorithm,2023,Energy Engineering: Journal of the Association of Energy Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140633798&doi=10.32604%2fee.2022.022122&partnerID=40&md5=78ed87fb45d7d679ab07fa1f24c6f7fd,cuckoo search algorithm; Incremental conductance Algorithm; maximum power point tracking; Partial shading condition; sudden light intensity Abdelraouf B.; Serhoud H.; Nacer H.,Comparative study of Sliding Mode and incremental conductance for Maximum Power Point Tracker for Photovoltaic Array; [Badanie porównawcze trybu przesuwania i przewodnictwa przyrostowego dla modułu śledzenia punktu maksymalnej mocy dla macierzy fotowoltaicznej],2023,Przeglad Elektrotechniczny,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85145552257&doi=10.15199%2f48.2023.01.21&partnerID=40&md5=f033eeaa0c25379eaada25e269301f7b,Converter; incremental conductance; MPPT; sliding mode; stand-alone Rerhrhaye F.; Khouili D.; Lahlouh I.; Ennaciri Y.; Rerhrhaye B.; Benzazah C.; El Akkary A.; Sefiani N.,Realization and Supervision of an Intelligent Energy Distribution System with a New Combination Topology of Fuzzy and PID Controllers,2023,International Journal on Engineering Applications,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85170657887&doi=10.15866%2firea.v11i3.22838&partnerID=40&md5=2fb248ff1b9248d95a1a78b5d1254d5c,Control; FLC; FLTPID; Management Energy; Renewable Energy; SCADA Vijai Ananth S.; Singaravelu S.,Modelling and Simulation of MPPT Based Solar Photovoltaic System for Voltage Lift LUO Converter,2023,International Journal of Electrical and Electronics Research,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85151686446&doi=10.37391%2fijeer.110112&partnerID=40&md5=0a15e9a1525e82405d5067d3a6a8876c,(PV) array; ANFIS; LUO converter; MATLAB/Simulink; MPPT Manna S.; Singh D.K.; Akella A.K.,A Review of Control Techniques for Wind Energy Conversion System,2023,International Journal of Engineering and Technology Innovation,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144800474&doi=10.46604%2fijeti.2023.9051&partnerID=40&md5=e52c277701664494be0d47b81b4556dd,Grid side controller; Machine side controller; Maximum power point tracking; Pitch angle controller; Wind energy conversion system Seyed Beheshti Fini S.A.; Shariatmadar S.M.; Amir V.,Smart Frequency Control of a Multicarrier Microgrid in the Presence of V2G Electric Vehicles,2023,International Transactions on Electrical Energy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159039701&doi=10.1155%2f2023%2f6205326&partnerID=40&md5=a8d99e46d7a8ea7fdd97f82afa0cac78, Chouiekh M.; Karmouni H.; Lilane A.; Benkirane K.; Saifaoui D.; Abid M.,Control of a Photovoltaic Pumping System Using the ABC Algorithm in EL Jadida Climate,2022,Technology and Economics of Smart Grids and Sustainable Energy,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128241943&doi=10.1007%2fs40866-022-00141-2&partnerID=40&md5=04ba9bc30c3034f8efddd6ad3726744d,Asynchronous motor; Centrifugal pump; DC-AC converter; DC/DC chopper; Maximum power point tracking; Photovoltaic generator Hartani M.A.; Hamouda M.; Abdelkhalek O.; Mekhilef S.,Sustainable energy assessment of multi-type energy storage system in direct-current-microgrids adopting Mamdani with Sugeno fuzzy logic-based energy management strategy,2022,Journal of Energy Storage,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143256303&doi=10.1016%2fj.est.2022.106037&partnerID=40&md5=20044d1a85d8e303dad99aaceeef0c26,DC-microgrids; Energy management; Frequency-decoupling control; Fuzzy logic control; Hybrid energy storage system; SoC recovery "Seguel J.L.; Seleme S.I., Jr.; Morais L.M.F.","Comparative Study of Buck-Boost, SEPIC, Cuk and Zeta DC-DC Converters Using Different MPPT Methods for Photovoltaic Applications",2022,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141878079&doi=10.3390%2fen15217936&partnerID=40&md5=6323fd92de572da651640d55daff4de2,Buck-Boost; Cuk; MPPT methods; PV system; SEPIC; Zeta Asadi A.; Karimzadeh M.S.; Liang X.; Mahdavi M.S.; Gharehpetian G.B.,A Novel Control Approach for a Single-Inductor Multi-Input Single-Output DC-DC Boost Converter for PV Applications,2023,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85174815612&doi=10.1109%2fACCESS.2023.3324597&partnerID=40&md5=37d8be555610a682a7328f2022aae387,Multi-input single-output dcdc converter; photovoltaic systems; proportional-integral-derivative (PID) cascade control; renewable energy Mahmood A.S.; Teke M.,Improving the Efficiency of Solar Systems by Tracking the MPP under Different Test Conditions,2023,Progress In Electromagnetics Research B,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159784358&doi=10.2528%2fPIERB23010703&partnerID=40&md5=5e4eeb74a0cba03e4dbf6aea6e06be03, Dahmane K.; Boulaoutaq E.M.; Bouachrine B.; Ajaamoum M.; Imodane B.; Mouslim S.; Benydir M.,Hybrid MPPT Control: P&O and Neural Network for Wind Energy Conversion System,2023,Journal of Robotics and Control (JRC),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85147524418&doi=10.18196%2fjrc.v4i1.16770&partnerID=40&md5=c9a18c7ee35dbc64f6092c3fc24ee59f,Hybrid control; MPPT; neural network control (NNC); observe (P&O); perturb; PMSG; Wind Energy Conversion System (WECS) Yan J.; Qiu C.; Wang Y.; Wu N.; Qu W.; Zhuang Y.; Yan G.; Wang P.; Zhang R.; Yan Y.; Deng R.; Luo J.; Gao J.; Wu Y.,Design of Control System for Multistage Distillation Seawater Desalination Device Driven by Photovoltaic-Thermal,2023,Journal of Marine Science and Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85146794162&doi=10.3390%2fjmse11010222&partnerID=40&md5=f4e084fe09294aa2caa0b578f4f948f9,control system; MPPT; photovoltaic power generation; seawater desalination Hanhart M.; Weihs L.; Rolff L.; Zoche J.; Grobe J.; Wunderlich R.; Heinen S.,An Integrated 50 V Boost Controller With Digitally-Assisted MPPT for Submodule PV Applications,2023,IEEE Open Journal of Power Electronics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149391462&doi=10.1109%2fOJPEL.2023.3250762&partnerID=40&md5=701f45d2046314295a57fda5e0ce6831,Boost controller; Boost converter; DC/DC converter; light load efficiency; mode switching; MPPT; PFM; photovoltaic system; PV; solar Kaysal A.; Köroğlu S.; Oğuz Y.; Kaysal K.,Design and experimental implementation of DC-DC converter based self-tuning fuzzy PI controller; [Kendinden ayarlı bulanık PI denetleyici tabanlı DA-DA dönüştürücü tasarımı ve deneysel uygulaması],2023,Journal of the Faculty of Engineering and Architecture of Gazi University,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85136565388&doi=10.17341%2fgazimmfd.739775&partnerID=40&md5=79b4928956118415b18752287001492f,DC-DC power converters; duty cycle; Fuzzy controller; pulse width modulation Ul-Haq A.; Fahad S.; Gul S.; Bo R.,Intelligent Control Schemes for Maximum Power Extraction from Photovoltaic Arrays under Faults,2023,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85146629916&doi=10.3390%2fen16020974&partnerID=40&md5=f61506a949d18b90506178cbc058dc8d,fuzzy logic scheme; maximum power point tracking; PV arrays; PV fault analysis; PV technologies Abadi I.; Musyafa A.; Erwandha K.G.; Fitriyanah D.N.,Design and building of a battery charging system using hybrid solar tracker and electric trip based on FPAO-FLC,2022,International Journal of Power Electronics and Drive Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139944802&doi=10.11591%2fijpeds.v13.i4.pp2305-2312&partnerID=40&md5=a7fefb7f667945a82e8d54debddc450a,FPAO-FLC; Hybrid system; SEPIC converter; Solar tracker; ZETA converter Bendé I.F.; Tchoffo Houdji E.; Tchaya G.B.; Nsouandélé J.L.D.B.; Kamta M.; Haman-Djalo,Backstepping Controller Design for Power Quality Improvement in a Two-Stage Grid-Connected Photovoltaic Systems with LCL Filter,2023,International Transactions on Electrical Energy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85179010776&doi=10.1155%2f2023%2f6604487&partnerID=40&md5=361711dc7ea868824fce4de398d9c35b, Yilmaz M.; Celikel R.; Gundogdu A.,Enhanced Photovoltaic Systems Performance: Anti-Windup PI Controller in ANN-Based ARV MPPT Method,2023,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163528582&doi=10.1109%2fACCESS.2023.3290316&partnerID=40&md5=d396fd581eeb7fe762460fd0a1061832,adaptive reference voltage; anti-windup PI; artificial neural network; MPPT; PV system Gao Y.; Wang S.; Dragicevic T.; Wheeler P.; Zanchetta P.,"Artificial Intelligence Techniques for Enhancing the Performance of Controllers in Power Converter-Based Systemsâ€Â""An Overview",2023,IEEE Open Journal of Industry Applications,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85181090490&doi=10.1109%2fOJIA.2023.3338534&partnerID=40&md5=efbf1a22ce3eeecc695cafe9a99e8b57,Artificial intelligence (AI); energy management; machine learning (ML); neural network (NN); power converter control; renewable energy integration Kumar C.S.; Kamaraja A.S.; Kumar K.K.; Bhuvanesh A.,Performance evaluation of solar-combined boosting topology for EV battery charger using interval type-2 fuzzy controller,2023,Electrical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85174834502&doi=10.1007%2fs00202-023-02073-1&partnerID=40&md5=f2981dfd9d54d371f634d72b8f6fc412,Battery load; IT2FLC; Maximum power point tracking; Output gainer; Photovoltaic Yun E.J.; Yu C.G.,A self-startup DC-DC boost converter for thermal energy harvesting in a 0.35 μm CMOS process,2022,Bulletin of Electrical Engineering and Informatics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139135994&doi=10.11591%2feei.v11i6.4133&partnerID=40&md5=c0eea4d4c7a58fc9263d17456677f6cd,DC-DC converters; Energy harvesting; Low voltage; Startup; Thermal energy Nivetha S.; Inbarani H.H.,Novel Architecture for Image Classification Based on Rough Set,2023,"International Journal of Service Science, Management, Engineering, and Technology",https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164774049&doi=10.4018%2fIJSSMET.323452&partnerID=40&md5=1b9a22dd99d91a6bb2712838c83efe10,CT-Scan; Deep Neural Network; Deep Tolerance Rough Set Architecture; Novel Tolerance Rough Set Classification Kabalci E.; Boyar A.,Highly Efficient Interleaved Solar Converter Controlled with Extended Kalman Filter MPPT,2022,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141869351&doi=10.3390%2fen15217838&partnerID=40&md5=5cc6880247c839eda06a0e6d996a3daf,extended Kalman filter; interleaved boost converter; maximum power point tracking (MPPT); partial shading; SiC MOSFET; solar converter Jayabaskaran G.; Suresh S.; Gopinath B.; Geetha M.,Solar PV Combined Efficient Torque Control of BLDC Motor Using Salp Swarm Optimization,2023,Electric Power Components and Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85152460056&doi=10.1080%2f15325008.2023.2196679&partnerID=40&md5=540cff89653d8b5943085adaf9eafb24,brushless DC motor; multiverse optimization; proportional integral derivative controller; salp swarm optimization; solar PV Kenar M.; Oğuz Y.; Fıdanboy H.,Design and Fuzzy-PI Control of Power Converters for Use in Solar Energy Systems,2023,Electric Power Components and Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163674809&doi=10.1080%2f15325008.2023.2227175&partnerID=40&md5=a8adea0eef6e4282afdb8b1d822dae50,fuzzy logic; PI controller; power converters; solar energy systems Ibrahim M.H.; Ang S.P.; Dani M.N.; Rahman M.I.; Petra R.; Sulthan S.M.,Optimizing Step-Size of Perturb & Observe and Incremental Conductance MPPT Techniques Using PSO for Grid-Tied PV System,2023,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148439622&doi=10.1109%2fACCESS.2023.3242979&partnerID=40&md5=2b7ec1f3cddc9e3c4710b2f9e70c7e24,Hybrid MPPT; incremental conductance; optimal step-size; particle swarm optimization; perturb and observe; single-stage grid connected PV system Nahin N.I.; Biswas S.P.; Mondal S.; Islam M.R.; Muyeen S.M.,A Modified PWM Strategy with an Improved ANN Based MPPT Algorithm for Solar PV Fed NPC Inverter Driven Induction Motor Drives,2023,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163445080&doi=10.1109%2fACCESS.2023.3291339&partnerID=40&md5=8c06ae72ae7fa9d7faf9916b190a8390,artificial neural network; induction motor drive; neutral point clamped inverter; power quality; Pulse width modulation; solar photovoltaic; total harmonic distortion Zulkifly Z.; Yusoff S.H.; Tumeran N.L.; Razali N.S.I.,BATTERY ENERGY STORAGE SYSTEM (BESS) MODELING FOR MICROGRID,2023,IIUM Engineering Journal,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149639001&doi=10.31436%2fiiumej.v24i1.2435&partnerID=40&md5=e4b4adc210de03fa251293053ab84a4e,battery energy storage system (BESS); maximum power point tracker (MPPT) controller; model predictive controller (MPC); proportional integral derivative (PID) controller Ortiz A.; Mendez E.; Macias I.; Molina A.,Earthquake Algorithm-Based Voltage Referenced MPPT Implementation through a Standardized Validation Frame,2022,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143793680&doi=10.3390%2fen15238971&partnerID=40&md5=0dfa15311a39a83f4f174823e1d748ab,DC-DC converter; FPGA; MPPT Pathak D.; Katyal A.; Gaur P.,An Enhanced Drift-Free Perturb and Observe Maximum Power Point Tracking Method Using Hybrid Metaheuristic Algorithm for a Solar Photovoltaic Power System,2023,Iranian Journal of Science and Technology - Transactions of Electrical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85178418527&doi=10.1007%2fs40998-023-00675-w&partnerID=40&md5=b324688279df52578520994a5b212210,Efficiency of PV system; Maximum power point tracking; Metaheuristic algorithms; SEPIC; Solar PV Madureira V.S.; das Chagas T.P.; de Jesus G.Q.,Integral linear quadratic Gaussian regulator subject to unknown inputs: application in photovoltaic systems,2023,International Journal of Dynamics and Control,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168932424&doi=10.1007%2fs40435-023-01282-7&partnerID=40&md5=4d516b3f25546080b89f636e1501e854,LQG; LQI; MPPT; Unknown inputs Venkatesh A.; Nalinakshan S.,Development of an Intelligent Control Strategy for a Hybrid Energy System Integrated with the HEV Drive,2023,IETE Journal of Research,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85152393666&doi=10.1080%2f03772063.2023.2192708&partnerID=40&md5=ecd0cd3fb6bf927fc795bf27d09a48b9,Bi-directional converters; Grid; HEV drive; Hybrid electric vehicles; Intelligent control systems; Powertrain technology; Test drive cycles Barjoei P.D.; Tavasoli-Kouhpaei M.,Optimal Design of Fuzzy Controller for Photovoltaic Maximum Power Tracking Using Particles Swarm Optimization Algorithm,2023,Jordan Journal of Electrical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85170697908&doi=10.5455%2fjjee.204-1667043172&partnerID=40&md5=ddbea5a640010329659153393ece10a9,Fuzzy logic controller; Maximum power point tracking; Particles swarm optimization algorithm; Photovoltaic system Swetha K.T.; Reddy B.V.; Robinson A.,An effective maximum power point tracking technique for partially shaded photovoltaic system under rapidly changing atmospheric conditions,2022,International Journal of Circuit Theory and Applications,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132863923&doi=10.1002%2fcta.3368&partnerID=40&md5=6e7f7852540a413ff8ada3aa0e32fe46,maximum power point tracking; Nelder Mead method; partial shading condition; particle swarm optimization; photovoltaic Kahsay A.H.; Regulski P.; Derugo P.,AI-based control techniques for maximum power point tracking of photovoltaic systems using a boost converter,2023,Przeglad Elektrotechniczny,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85179689420&doi=10.15199%2f48.2023.11.01&partnerID=40&md5=dd529b8260b5fd8cf76377670d8c23fa,Artificial Intelligence; DC-DC converter; MPPT; Photovoltaic Sankar R.; Deepika.K K.; Alsharef M.; Alamri B.,A Smart ANN-Based Converter for Efficient Bidirectional Power Flow in Hybrid Electric Vehicles,2022,Electronics (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141841926&doi=10.3390%2felectronics11213564&partnerID=40&md5=6ecdc69254f5745017cd0b95733a2b72,artificial neural network; bidirectional DC/DC converter; hybrid electric vehicle (HEV); internal combustion engine (ICE); two battery sources Dong Y.; Zhang G.; He G.; Si W.,A Novel Control Strategy for Uninterruptible Power Supply Based on Backstepping and Fuzzy Neural Network,2023,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85147274752&doi=10.1109%2fACCESS.2023.3235885&partnerID=40&md5=ab323b232581418f321bbdb86921e3e3,backstepping control; fuzzy neural network (FNN); Power quality; uninterruptible power supply (UPS) Lu Y.; Xiao W.; Lu D.D.-C.,Optimal Dynamic and Steady-State Performance of PV-Interfaced Converters Using Adaptive Observers,2022,IEEE Transactions on Circuits and Systems II: Express Briefs,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85135746861&doi=10.1109%2fTCSII.2022.3195992&partnerID=40&md5=10edcccceff7886b38af0c499768197c,Control engineering; DC-DC converter; double-line frequency ripple rejection; extended state observer; photovoltaic power systems Tepe I.F.; Irmak E.,An Integrated Energy Control System to Provide Optimum Demand Side Management of a Grid-Interactive Microgrid,2023,Electric Power Components and Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149414524&doi=10.1080%2f15325008.2023.2179690&partnerID=40&md5=f00c22ea2301d3a0fdc82b5be8f615b5,battery control; demand side management; fuzzy logic; metaheuristic algorithms; microgrid; MPPT control Yan Z.; Miyuan Z.; Yajun W.; Xibiao C.; Yanjun L.,Photovoltaic MPPT algorithm based on adaptive particle swarm optimization neural-fuzzy control,2023,Journal of Intelligent and Fuzzy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148014819&doi=10.3233%2fJIFS-213387&partnerID=40&md5=01e31178b32c20af43abc95518e26e72,Adaptive particle swarm optimization algorithm (APSO); BP neural network; fuzzy control; MPPT; PV power generation Fekik A.; Hamida M.L.; Kais D.; Khati H.; Bousbaine A.; Denoun H.,A Design and Implementation of a New Control Based on Petri Nets for Three Phase PWM-Rectifier,2023,"International Journal of Service Science, Management, Engineering, and Technology",https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168083836&doi=10.4018%2fIJSSMET.326801&partnerID=40&md5=c4f0dfee860871903699d47ce0e010c8,DPC; DSPACE; Optocoupler; Petri Nets; PWM Rectifier; THD; UPF Hamouda N.; Babes B.; Kahla S.; Hamouda C.; Uwe R.,An Optimized FO-PID Controller and Predictive Current Control of the APF Connected AWPS for Power Quality Improvement,2023,Przeglad Elektrotechniczny,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161069452&doi=10.15199%2f48.2023.05.19&partnerID=40&md5=ab196be8273b1164d9efe69f00c62d33,active power Filter; Arc welding power supply; fractional order PID controller; gray wolf optimization; predictive current control Yuvaraj P.; Kumar R.S.,Performance Efficiency of Solar Wind Hybrid Power Generation Using Hybrid Grid Based Grey Wolf Optimization,2023,Journal of Electrical Engineering and Technology,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137430300&doi=10.1007%2fs42835-022-01195-z&partnerID=40&md5=de55a01fc652cd2ad41c2701727af432,DC converters; Hybrid system; Hydro power; PV; Renewable energy Dash D.K.; Sadhu P.K.; Shrivastav A.,A robust super twisting sliding mode controller for optimal grid synchronization of photovoltaic system,2023,Microsystem Technologies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85178437451&doi=10.1007%2fs00542-023-05573-z&partnerID=40&md5=b94ea07d0f32bce4bd55384e3d6aa65b, Kiyyour B.; Laggoun L.; Salhi A.; Naimi D.; Boukhalfa G.,Improvement DTC for Induction Motor Drives Using Modern Speed Controllers Tuning by PSO Algorithm,2023,Periodica polytechnica Electrical engineering and computer science,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85169290882&doi=10.3311%2fPPee.21000&partnerID=40&md5=a4f7b6a88dd5c23427c738bcf91167ce,direct torque control; first sliding mode control; fuzzy logic; induction machine; particle swarm optimization; second sliding mode control Sankar R.; Chandrakala D.; Hema R.; Padmapriya D.,Performance improvement in photovoltaic-grid system using genetic algorithm,2023,Indonesian Journal of Electrical Engineering and Computer Science,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85177811819&doi=10.11591%2fIJEECS.V32.I3.PP1327-1336&partnerID=40&md5=6d92a3a5ffeac17a0e08631efc7d3d9c,Boost converter; controller; Genetic algorithm; Grid system; Perturb and observe algorithm; Photovoltaic array; Proportional integral derivative; Renewable energy Aldin N.A.N.; Abdellatif W.S.E.; Salem Elbarbary Z.M.; Omar A.I.; Mahmoud M.M.,Robust Speed Controller for PMSG Wind System Based on Harris Hawks Optimization via Wind Speed Estimation: A Real Case Study,2023,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85147277913&doi=10.1109%2fACCESS.2023.3234996&partnerID=40&md5=ac50fa69b595877a107cba090c2b8ff5,Adaptive FLC; efficiency; Harris Hawks' algorithm (HHA); MPPT; PMSG; real wind variations; wind speed estimation Abdalla Y.S.; Ali N.; Alanazi A.; Alanazi M.; Armghan H.; Sharaf M.A.; Boudabbous A.R.; Armghan A.,Fast reaching law based integral terminal sliding mode controller for photovoltaic-fuel cell-battery-super capacitor based direct-current microgrid,2022,Journal of Energy Storage,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141231625&doi=10.1016%2fj.est.2022.105915&partnerID=40&md5=9d41f9e43218d3807a9a3302360fe61b,Fuel cell; Hybrid energy storage system; Integral terminal sliding mode control; Nonlinear control; Photovoltaic system Yasameen Kamil N.; Omar Khaldoon A.; Alrawi A.A.A.,Performance Enhancement of Boost Converter for Solar Panels System using Genetic Algorithm,2023,International Journal of Electrical and Electronics Research,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163151416&doi=10.37391%2fijeer.110215&partnerID=40&md5=e86e9f6fe015204fdd7f2b438da82cfb,Boost converter; Control system; Genetic algorithm; Solar panel; Three-term controller Aguila-Leon J.; Vargas-Salgado C.; Chiñas-Palacios C.; Díaz-Bello D.,Solar photovoltaic Maximum Power Point Tracking controller optimization using Grey Wolf Optimizer: A performance comparison between bio-inspired and traditional algorithms,2023,Expert Systems with Applications,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137160571&doi=10.1016%2fj.eswa.2022.118700&partnerID=40&md5=c9937e180f245e8f4486b99012ae9d74,Bio-inspired algorithm; Grey Wolf Optimization; Maximum Power Point Tracking; Metaheuristic algorithms; Microgrid; Optimization; Photovoltaic Malobé Paul A.; Philippe D.; Eloundou Pascal N.,Meta-Heuristic Optimization of the Neuro-Fuzzy MPPT Controller for PV Systems Under Partial Shading Conditions,2023,Journal of Solar Energy Research,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159273509&doi=10.22059%2fJSER.2022.349012.1255&partnerID=40&md5=cfd471a1a849d28fefd851e654219bbf,Cuckoo; GMPP; meta-heuristics; NF-PSO; partial shading Periasamy M.; Kaliannan T.; Selvaraj S.; Manickam V.; Joseph S.A.; Albert J.R.,Various PSO methods investigation in renewable and nonrenewable sources,2022,International Journal of Power Electronics and Drive Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139916065&doi=10.11591%2fijpeds.v13.i4.pp2498-2505&partnerID=40&md5=fb9c951c3254e3087c2af62efbd4853d,Combined economic emission Load dispatch; Non-renewable energy; Particle swarm optimization; Renewable energy sources; Sources optimization Muñoz J.-G.; Angulo-García D.; Angulo F.,Boost-flyback converter: Experimental assessment of recent control techniques,2023,International Journal of Circuit Theory and Applications,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85177236900&doi=10.1002%2fcta.3860&partnerID=40&md5=a4886cc03913bbfbb939275fdc5fdd4a,boost-flyback; hysteretic control; zero average surface control Kanagaraj N.; Al-Ansi M.,Maximum Power Extraction Control Algorithm for Hybrid Renewable Energy System,2023,Computer Systems Science and Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85136839366&doi=10.32604%2fcsse.2023.029457&partnerID=40&md5=e4bb923bf89f24ac791bd1d16c66e2f0,boost converter; Fractional order PID controller; hybrid renewable energy system; MPPT; PV array; thermoelectric generator Mohapatra B.; Sahu B.K.; Pati S.; Bajaj M.; Blazek V.; Prokop L.; Misak S.; Alharthi M.,Real-Time Validation of a Novel IAOA Technique-Based Offset Hysteresis Band Current Controller for Grid-Tied Photovoltaic System,2022,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143833747&doi=10.3390%2fen15238790&partnerID=40&md5=c7112d7e05b2970b753bace8086119f8,arithmetic optimization algorithm (AOA); conventional hysteresis band current controller (CHCC); improved arithmetic optimization algorithm (IAOA); offset hysteresis band current controller (OFHCC); particle swarm optimization (PSO) Gulzar M.M.; Iqbal A.; Sibtain D.; Khalid M.,An Innovative Converterless Solar PV Control Strategy for a Grid Connected Hybrid PV/Wind/Fuel-Cell System Coupled With Battery Energy Storage,2023,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149893681&doi=10.1109%2fACCESS.2023.3252891&partnerID=40&md5=57fa3b6de90b04c7e5c197469639830b,battery energy storage system; doubly fed induction motor; electrolyzer; energy management system; fuel cell; Grid-connected system; maximum power point tracking Aliaga R.; Munoz J.; Rivera M.; Wheeler P.; Rohten J.; Trentin A.,A Single Phase Hybrid Multiport Microinverter for Photovoltaic Energy Controlled by Exact Linearization,2023,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85160243159&doi=10.1109%2fACCESS.2023.3278099&partnerID=40&md5=ddb99c5414a132ec3dd4459793dc332b,Exact linearization; microinverter; multiport Anish S.; Germin Nisha M.,Develop Emperor Penguin Optimizer for Speed Regulation of BLDC Motor Using PV-Based Z-Source Inverter,2023,Electric Power Components and Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168298687&doi=10.1080%2f15325008.2023.2246465&partnerID=40&md5=26df49f7e2c840586f61496ecba5d040,BLDC motor; ePO; FOPID controller; irradiance; speed control; sSA; torque control Daud A.-K.; Khader S.,Irradiation and Temperature effects on Modified SEPIC Converter Performance for PV Systems,2023,WSEAS Transactions on Power Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85173869105&doi=10.37394%2f232016.2023.18.16&partnerID=40&md5=125f22c84c9062969c4ea22f37e71a01,Modified SEPIC Converter; MPPT; Photovoltaic Source; PID Controller; PWM Rajesh M.; Lakshmi Devi A.,"Wind, PV Solar, Hydro and Hybrid Energy Storage System-Based Intelligent Adaptive Control for Standalone Distributed Generation System",2022,SSRG International Journal of Electrical and Electronics Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85145383033&doi=10.14445%2f23488379%2fIJEEE-V9I11P108&partnerID=40&md5=19584aa5132963e0aa9ed2d47a3b9be0,Adaptive neuro-fuzzy inference system (ANFIS); Battery; Hybrid Energy Storage (HES); Hydro; Photovoltaic; Super capacitor; Wind Karunanithi K.; Ramesh S.; Raja S.P.; Sreedhar R.; Kannan S.; Ramudu V.,Investigations of standalone PV system with battery-supercapacitor hybrid energy storage system for household applications,2023,International Journal of Information Technology (Singapore),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144882329&doi=10.1007%2fs41870-022-01144-z&partnerID=40&md5=8ade55029f0066d80691d52882798475,Hybrid energy storage system (HESS); Lithium ion battery (LIB); Photovoltaic (PV) system; Supercapacitor (SC) Arivalahan R.; Venkatesh S.; Vinoth T.,An effective speed regulation of brushless DC motor using hybrid approach,2022,Advances in Engineering Software,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140805962&doi=10.1016%2fj.advengsoft.2022.103321&partnerID=40&md5=e2bb37168342ca658b526aac7876df98,Gain parameter; Overshoot; Peak overshoot; Peak time; Peak undershoot; Reduction of error; Rise time; Settling time; Speed control; Steady state error Hamdy M.; Ibrahim A.; Abozalam B.; Helmy S.,Maximum Power Point Tracking for Solar Photovoltaic System Based on Interval Type-3 Fuzzy Logic: Practical Validation,2023,Electric Power Components and Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150819618&doi=10.1080%2f15325008.2023.2188316&partnerID=40&md5=9a08ee2fdf546fa54a3d862a37f44b92,DC-DC buck converter; maximum power point tracking; photovoltaic; Type-1 fuzzy logic; Type-2 fuzzy logic; Type-3 fuzzy logic Ab-Ghani S.; Daniyal H.; Ahmad A.Z.; Jaalam N.; Saad N.M.; Ramlan N.H.; Bahari N.,Adaptive online auto-tuning using Particle Swarm optimized PI controller with time-variant approach for high accuracy and speed in Dual Active Bridge converter,2023,AIMS Electronics and Electrical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85165406132&doi=10.3934%2felectreng.2023009&partnerID=40&md5=d5935abece3880a80c7af512c45d2c96,dual active bridge; electric vehicles; online auto-tuning; particle swarm optimization; time variant Aoughlis C.; Belkaid A.; Kacimi M.A.; Colak I.; Guenounou O.; Bakir T.; Brikh L.,A Novel Dynamic and Self-Adaptive InCre Technique Based on PI Control and EO Optimization for Hybrid PV-TEG Conversion Systems,2023,Electric Power Components and Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85181190305&doi=10.1080%2f15325008.2023.2296964&partnerID=40&md5=05d67da818060a466ba15a8ff420470c,equilibrium optimizer algorithm (EO); hybrid sources (PV-TEG); incremental conductance (InCre); maximum power point tracking (MPPT); multi-input converter; PI controller; smart grid Gurumoorthy K.; Balaraman S.,Controlling the Speed of renewable-sourced DC drives with a series compensated DC to DC converter and sliding mode controller,2023,Automatika,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85138221706&doi=10.1080%2f00051144.2022.2118099&partnerID=40&md5=6d4164057e865c97e34f706b5fbf7d39,average state space modelling; series compensated buck boost converter; sliding mode controller; Solar photo voltaic systems; speed regulation of DC motors Hamoodi A.N.; Hamoodi S.A.; Hameedi F.I.,Enhancing the Solar PV Plant Based on Incremental Optimization Algorithm; [Udoskonalanie elektrowni fotowoltaicznej w oparciu o algorytm optymalizacji przyrostowej],2023,Przeglad Elektrotechniczny,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85174624282&doi=10.15199%2f48.2023.10.35&partnerID=40&md5=ba44b7e4ff0f9bd5f3dd35ea5851914e,Boost converter; IO; MPPT; PV module Bakar Siddique M.A.; Asad A.; Asif R.M.; Rehman A.U.; Sadiq M.T.; Ullah I.,Implementation of Incremental Conductance MPPT Algorithm with Integral Regulator by Using Boost Converter in Grid-Connected PV Array,2023,IETE Journal of Research,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106225663&doi=10.1080%2f03772063.2021.1920481&partnerID=40&md5=b7d46a29c0cb1f724c341e00ab763525,Boost converter; Incremental conductance; MPPT; Photovoltaic Islam M.S.; Noor S.Z.M.; Mohamad H.; Salim N.A.; Yasin Z.M.,A new technique in reducing self-power consumption in the controller of off-grid solar home system,2022,International Journal of Power Electronics and Drive Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139926002&doi=10.11591%2fijpeds.v13.i4.pp2235-2243&partnerID=40&md5=3c4ca3821a2b119cf61644070c6bd787,Latching; Push switch mechanism; Self-power consumption; Sizing of solar panel; Solar home system; Time hold on Ayad I.A.; Elwarraki E.; Ali S.U.; Qaisar S.M.; Waqar A.; Baghdadi M.; Alzahrani A.,Optimized Nonlinear Integral Backstepping Controller for DC-DC Three-Level Boost Converters,2023,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159841602&doi=10.1109%2fACCESS.2023.3274773&partnerID=40&md5=010c8eda66b91352370d32251941e53e,genetic algorithms; integral backstepping; nonlinear control; Three level boost DC-DC converter; tuning Naidu I.E.S.; Srikanth S.; Rao A.S.S.; Venkatanarayana A.,A novel mine blast optimization algorithm (MBOA) based MPPT controlling for grid-PV systems,2023,AIMS Electronics and Electrical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85162266069&doi=10.3934%2felectreng.2023008&partnerID=40&md5=7f53e12e655c157f51f5bdd99d6f9a8c,grid systems; interleaved luo dc-dc converter; maximum power point tracking (MPPT); mine blast optimization algorithm (MBOA); renewable energy sources (RES); solar photovoltaic (PV) systems Yanmaz K.; Mengi O.O.; Sahin E.,Advanced STATCOM Control with the Optimized FOPTID-MPC Controller,2023,IETE Journal of Research,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130252673&doi=10.1080%2f03772063.2022.2069606&partnerID=40&md5=d7ae17ee470973df09c913df787c5e89,Fractional-order PID; Fuel cell; Model predictive control (MPC); Pathfinder algorithm (PFA); PTID; Static compensator; TID Bouchriha I.; Ghanem A.B.; Nouri K.,Control of a photovoltaic system by sliding mode based on backstepping; [Sterowanie systemem fotowoltaicznym w trybie ślizgowym opartym na backsteppingu],2023,Przeglad Elektrotechniczny,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164497747&doi=10.15199%2f48.2023.06.39&partnerID=40&md5=3537cac4c650ef3e9fedcdc455230972,Backstepping; Boost converter; maximum power point tracking; Sliding Mode Control Prasad M.; Abdelaziz A.Y.; Akella A.K.,Comparative study of different topologies of solar photovoltaic fed impedance-source inverter based dynamic voltage restorer,2022,Journal of Engineering Research (Kuwait),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85131671364&doi=10.36909%2fjer.10023&partnerID=40&md5=b23bdb12e60e23ba21bac80e965fb6d3,Perturbation & Observation; Renewable Energy; Voltage quality; ZSI Verma A.; Pathak D.; Gaur P.,A new contour balancing rearrangement technique to enhance the solar PV array power under a realistic partial shading condition,2022,Optik,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85131436228&doi=10.1016%2fj.ijleo.2022.169378&partnerID=40&md5=84c9e46bf52491e06c0c771067259cab,Dynamic cloud model; Enhanced power generation; Geolocation; Mono-crystalline PV array; Partial shading; Reconfiguration of PV array; TCT topology; Thin-film PV panel; Tilt angle Oussama M.; Abdelghani C.; Lakhdar C.,Efficiency and robustness of type-2 fractional fuzzy PID design using salps swarm algorithm for a wind turbine control under uncertainty,2022,ISA Transactions,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108545708&doi=10.1016%2fj.isatra.2021.06.016&partnerID=40&md5=7b5d8a96d78571a4adb9e272ef58de9e,MPPT; Pitch angle; Type-2 fractional fuzzy PID controller; Uncertainties; Wind turbine Carbone R.; Borrello C.,Experimenting with a Battery-Based Mitigation Technique for Coping with Predictable Partial Shading,2022,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85131863119&doi=10.3390%2fen15114146&partnerID=40&md5=b0d3e98d9d0bb6eee3501155ee88bf2e,battery storage; bypass diodes; hotspot; partial shadings; PV plants Ouremchi M.; El Mouzouade S.; El Khadiri K.; Tahiri A.; Qjidaa H.,Integrated energy management converter based on maximum power point tracking for photovoltaic solar system,2022,International Journal of Electrical and Computer Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85122780730&doi=10.11591%2fijece.v12i2.pp1211-1222&partnerID=40&md5=a87a75730a35428af694af21d3113571,CMOS technology; DC-DC boost power converter; Integrated MPPT; Ripple correlation control algorithm; Solar energy Roy S.; Wasekul Azad A.N.M.; Baidya S.; Alam M.K.; Khan F.,"Powering Solutions for Biomedical Sensors and Implants Inside the Human Body: A Comprehensive Review on Energy Harvesting Units, Energy Storage, and Wireless Power Transfer Techniques",2022,IEEE Transactions on Power Electronics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127779927&doi=10.1109%2fTPEL.2022.3164890&partnerID=40&md5=6253ade97953397bb79f3a48ea9e2454,Battery; biomedical implants; control; conversion; energy harvesting; maximum power transfer; MEMS; power converter; sensor; startup; vibration; wireless power transfer (WPT) Sharkawy A.-N.; Ali M.M.; Mousa H.H.H.; Ali A.S.; Abdel-Jaber G.T.,Short-Term Solar PV Power Generation Day-Ahead Forecasting Using Artificial Neural Network: Assessment and Validation,2022,International Journal of Robotics and Control Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149610700&doi=10.31763%2fijrcs.v2i3.780&partnerID=40&md5=dbfaa9e797df4f94ef2b7902e0a90170,Error Backpropagation Algorithm; Levenberg-Marquardt Algorithm; MLFFNN Effectiveness; Multilayer Feedforward NN; Power Prediction; Solar PV Power Station Azar A.T.; Abed A.M.; Abdulmajeed F.A.; Hameed I.A.; Kamal N.A.; Jawad A.J.M.; Abbas A.H.; Rashed Z.A.; Hashim Z.S.; Sahib M.A.; Ibraheem I.K.; Thabit R.,A New Nonlinear Controller for the Maximum Power Point Tracking of Photovoltaic Systems in Micro Grid Applications Based on Modified Anti-Disturbance Compensation,2022,Sustainability (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137932840&doi=10.3390%2fsu141710511&partnerID=40&md5=48d3e7f465478f27d3cf9e44b00d8dcc,active disturbance rejection control (ADRC); MPPT; photovoltaic system (PV) Zhang Y.; Wang Y.-J.; Yu J.-Q.,A Novel MPPT Algorithm for Photovoltaic Systems Based on Improved Sliding Mode Control,2022,Electronics (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85136777805&doi=10.3390%2felectronics11152421&partnerID=40&md5=10fda1d0b82a3e3a110be86356b7f3ef,boost converter; maximum power point tracking (MPPT); partial shading conditions; photovoltaic (PV) power generation system; sliding model control Vadivel S.; Sengodan B.C.; Ramasamy S.; Ahsan M.; Haider J.; Rodrigues E.M.G.,Social Grouping Algorithm Aided Maximum Power Point Tracking Scheme for Partial Shaded Photovoltaic Array,2022,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126960141&doi=10.3390%2fen15062105&partnerID=40&md5=a06051d652c9d3500084aff4c078b6f8,DC-DC converter; Maximum power point tracking; Partial shading; Photovoltaic; Social group algorithm; Soft computing Vijayakumar S.; Govindaraju C.,Generation of Maximum Power in Grid Connected PV System Based MPPT Control Using Hybrid Elephant Herding Optimization Algorithm,2022,Electric Power Components and Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141423667&doi=10.1080%2f15325008.2022.2136293&partnerID=40&md5=555aa39d8510bf136495273e92e18f4a,adapted Luo converter and PID controller; artificial neural network (ANN); elephant herding optimization (EHO); embedded controller; MPPT technique; PV array Ramos-Paja C.A.; Danilo-Montoya O.; Grisales-Noreña L.F.,Photovoltaic System for Microinverter Applications Based on a Non-Electrolytic-Capacitor Boost Converter and a Sliding-Mode Controller,2022,Electronics (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85138673222&doi=10.3390%2felectronics11182923&partnerID=40&md5=d05b9e5c4d2af107f4a8fad12e357b79,boost converter; non-electrolytic capacitor; PV microinverter; sliding-mode controller Alzubaidi A.A.; Khaliq L.A.; Hamad H.S.; Al-Azzawi W.K.; Jabbar M.S.; Shihab T.A.,MPPT implementation and simulation using developed P&O algorithm for photovoltaic system concerning efficiency,2022,Bulletin of Electrical Engineering and Informatics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85135978139&doi=10.11591%2feei.v11i5.3949&partnerID=40&md5=2359c50e1969ff6003421cbccfb7922f,Buck converter ; Irradiation & temp; MPPT; P&O; Photovoltaic system Karami-Mollaee A.; Barambones O.,Dynamic Sliding Mode Control of DC-DC Converter to Extract the Maximum Power of Photovoltaic System Using Dual Sliding Observer,2022,Electronics (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137399237&doi=10.3390%2felectronics11162506&partnerID=40&md5=fdeeffba683197af074b7bd44691aa06,converter control; dual sliding observer; photovoltaic generator system; sliding mode control Bouderres N.; Kerdoun D.; Djellad A.; Chiheb S.; Dekhane A.,Optimization of Fractional Order PI Controller by PSO Algorithm Applied to a Grid-Connected Photovoltaic System,2022,Journal Europeen des Systemes Automatises,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143138266&doi=10.18280%2fjesa.550401&partnerID=40&md5=fffc954c026a7c83aa94b51da47b9cea,control; converter; FOPI; MPPT; PSO; PV; THD; VOC He L.; Zhao S.; Wang X.; Lee C.-K.,Artificial Neural Network-Based Parameter Identification Method for Wireless Power Transfer Systems,2022,Electronics (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129210083&doi=10.3390%2felectronics11091415&partnerID=40&md5=5c06472ead710d3127d79b9f1b9fa172,artificial neural network; parameter identification; wireless power transfer Aseri N.A.M.; Ismail M.A.; Fakharudin A.S.; Ibrahim A.O.; Kasim S.; Zakaria N.H.; Sutikno T.,Comparison of meta-heuristic algorithms for fuzzy modelling of COVID-19 illness’ severity classification,2022,IAES International Journal of Artificial Intelligence,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85125839104&doi=10.11591%2fijai.v11.i1.pp50-64&partnerID=40&md5=ed6d2f2e1ba5eca98fc217c1b7118bf1,COVID-19; Differential evolution; Fuzzy logic; Genetic algorithm; Meta-heuristic; Particle swarm optimization; TLBO Algorithm Semeskandeh S.; Hojjat M.; Abardeh M.H.,Design of a photovoltaic MPPT charge controller using DC-DC ZETA converter with a modified three-stage charging method,2022,International Journal of Power Electronics and Drive Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85134961203&doi=10.11591%2fijpeds.v13.i3.pp1887-1894&partnerID=40&md5=9146235dd34b97e1bf6cfa348ec6e74d,Battery; Converter; Photovoltaic; Renewable; Standalone Hussan U.; Majeed M.A.; Asghar F.; Waleed A.; Khan A.; Javed M.R.,Fuzzy logic-based voltage regulation of hybrid energy storage system in hybrid electric vehicles,2022,Electrical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106479819&doi=10.1007%2fs00202-021-01315-4&partnerID=40&md5=c5fb5827b1b06767749674a83b4c49ed,Battery; Fuel cell (FC); Fuzzy logic; Hybrid electric vehicle (HEV); Ultra-capacitor (UC) Awan M.M.A.; Javed M.Y.; Asghar A.B.; Ejsmont K.,Performance Optimization of a Ten Check MPPT Algorithm for an Off-Grid Solar Photovoltaic System,2022,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126986486&doi=10.3390%2fen15062104&partnerID=40&md5=c3020b545dcbb2eb3e6c8fe814c248fb,Maximum power point; MPPT algorithm; Partial shading condition; Solar photovoltaic Akram N.; Khan L.; Agha S.; Hafeez K.,Global Maximum Power Point Tracking of Partially Shaded PV System Using Advanced Optimization Techniques,2022,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132267282&doi=10.3390%2fen15114055&partnerID=40&md5=6202dc928349e344173eb5b090f4aa38,Firefly Algorithm; maximum power point tracking; photovoltaic system Al-Gizi A.; Miry A.H.; Shehab M.A.,Optimization of fuzzy photovoltaic maximum power point tracking controller using chimp algorithm,2022,International Journal of Electrical and Computer Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85135251145&doi=10.11591%2fijece.v12i5.pp4549-4558&partnerID=40&md5=d0450e10cb5704ff91a31d73ddbbc224,Chimp algorithm; Fuzzy logic controller; Maximum power point tracking; Optimization; Photovoltaic Pradhan C.; Senapati M.K.; Ntiakoh N.K.; Calay R.K.,Roach Infestation Optimization MPPT Algorithm for Solar Photovoltaic System,2022,Electronics (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126663109&doi=10.3390%2felectronics11060927&partnerID=40&md5=8b494cfd7c09ef546901b81e0152ceff,DC-DC boost converter; Maximum power point tracking (MPPT); Partial shading condition (PSC); Particle swarm optimization (PSO); Roach infestation optimization (RIO); Solar photovoltaic system Zhou Y.,The overall framework design of automatic logistics system using a hybrid ANN-PSO model,2022,Engineering with Computers,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85104762377&doi=10.1007%2fs00366-021-01388-6&partnerID=40&md5=6e0d32899733cc620c6b17d8b0310e19,Artificial neural network; Automatic logistic systems; Reliability and efficiency; Simulation; Swarm optimization Didi F.; Chaouche M.S.,DESIGN AND SIMULATION OF GRID-CONNECTED PHOTOVOLTAIC SYSTEM’S PERFORMANCE ANALYSIS WITH OPTIMAL CONTROL OF MAXIMUM POWER POINT TRACKING BASED ON ARTIFICIAL INTELLIGENCE,2022,Review of Computer Engineering Research,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139434322&doi=10.18488%2f76.v9i3.3144&partnerID=40&md5=343a5bcd2d8d021646756441615eea7d,Fuzzy controller; Grid connected PV; IC algorithm; Modeling; MPPT control; PSO algorithm; PVsystem; VSI control Zhu H.; Yuan S.; Li C.,Network communication monitoring system of distributed PV power generation system,2022,International Journal of Communication Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087728814&doi=10.1002%2fdac.4517&partnerID=40&md5=bde47967a3852fd04b5a00a309cc6fff,DC/DC bidirectional converter; distributed photovoltaic power generation; mode switching; monitoring system; network communication Lupangu C.; Saha A.K.; Bansal R.C.; Justo J.J.,Critical Performance Comparison Between Single-Stage and Two-Stage Incremental Conductance MPPT Algorithms for DC/DC Boost-Converter Applied in PV Systems,2022,Electric Power Components and Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141407604&doi=10.1080%2f15325008.2022.2136286&partnerID=40&md5=a737bfe3aea0e58f883ab9bb5d6ce6f5,and dynamic response; DC/DC boost converter; maximum power point tracking (MPPT) algorithm; solar PV system; steady state error; tracking efficiency Derdar A.; Bensiali N.; Adjabi M.; Boutasseta N.; Bouakkaz M.S.; Attoui I.; Fergani N.; Bouraiou A.,Photovoltaic energy generation systems monitoring and performance optimization using wireless sensors network and metaheuristics,2022,Sustainable Computing: Informatics and Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124234725&doi=10.1016%2fj.suscom.2022.100684&partnerID=40&md5=775b3081269719f8df02e17cf8dd59a1,Maximum power point tracking (MPPT); Metaheuristics; Monitoring; Particle swarm optimization (PSO); Photovoltaic (PV) energy systems; Wireless sensors network (WSN) Gökkuş G.,ANFIS Based Real-Time Power Reference Generator for PV Applications; [FV Uygulamaları için ANFIS Tabanlı Gerçek Zamanlı Güç Referans Üreteci],2022,El-Cezeri Journal of Science and Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139773663&doi=10.31202%2fecjse.1101544&partnerID=40&md5=53e0cc910233fa6dd515270220b06ff9,ANFIS; PV Panel; Real-Time Power Estimation Louarem S.; Kebbab F.Z.; Salhi H.; Nouri H.,A comparative study of maximum power point tracking techniques for a photovoltaic grid-connected system,2022,Electrical Engineering and Electromechanics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85134052861&doi=10.20998%2f2074-272X.2022.4.04&partnerID=40&md5=479111bf1a050ccbb31f6fa47b63a88f,Beta algorithm; fuzzy logic controller; incremental conductance; maximum power point tracking; particle swarm optimization Laayati O.; El Hadraoui H.; Guennoui N.; Bouzi M.; Chebak A.,Smart Energy Management System: Design of a Smart Grid Test Bench for Educational Purposes,2022,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128454078&doi=10.3390%2fen15072702&partnerID=40&md5=e50775a9f371a514b16d02ed182c03e6,education; energy management; optimization; PLC; remote laboratory; renewable energies; SCADA; smart grid Ponce P.; MacCleery B.; Soriano L.A.; García M.; Leví V.; Molina A.,Expanding electric vehicles lifetime in power electronic stage using an optimized fuzzy logic controller,2022,International Journal on Interactive Design and Manufacturing,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119966224&doi=10.1007%2fs12008-021-00794-w&partnerID=40&md5=5d38a5f890ead0f082810572b049fa65,Electric vehicle; Fuzzy controller; Metaheuristic optimization; Power electronics Mishra D.P.; Senapati R.; Salkuti S.R.,Comparison of DC-DC converters for solar power conversion system,2022,Indonesian Journal of Electrical Engineering and Computer Science,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128740247&doi=10.11591%2fijeecs.v26.i2.pp648-655&partnerID=40&md5=407fd5d1ca42236e0700b4150f5e6c35,DC-DC power converters; MPPT algorithm; Non-inverting buck-boost; Photovoltaic systems; PV panel Ghatak A.; Pandit T.; Kishan D.; Raushan R.,Comparative Analysis of Maximum Power Point Tracking Algorithms for Standalone PV System Under Variable Weather Conditions,2022,Distributed Generation and Alternative Energy Journal,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85162186977&doi=10.13052%2fdgaej2156-3306.38110&partnerID=40&md5=8ed0d3b95bec287e559f7e00a6ba433e,Cuckoo search; fuzzy logic; incremental conductance; maximum power point tracking; particle swarm optimization; perturb and observe; photovoltaic Ramalingam S.P.; Shanmugam P.K.,Hardware Implementation of a Home Energy Management System Using Remodeled Sperm Swarm Optimization (RMSSO) Algorithm,2022,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85134617381&doi=10.3390%2fen15145008&partnerID=40&md5=5ac5b42867a281d81dc252d13fe97f84,constriction factor; day-ahead pricing; home energy management system; remodeled sperm swarm optimization; salp swarm optimization; sperm swarm optimization; user satisfaction Nandakumar N.; Symon V.A.T.P.,Frequency Variations of Low Inertia Grid by MPPT Controller & EHHO Algorithm: A Synthetic Inertia Approach,2022,SSRG International Journal of Electrical and Electronics Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143225837&doi=10.14445%2f23488379%2fIJEEE-V9I8P103&partnerID=40&md5=5909565df160cd1889e4cfe4f437fe4a,Grid System; Harris Hawk's Optimization; Maximum Power Point Tracking; Renewable Energy Source; Synthetic Inertia Belkacem M.; Meguenni K.Z.; Bousserhane I.K.,Comparative study between backstepping and backstepping sliding mode controller for suspension of vehicle with a magneto-rheological damper,2022,International Journal of Power Electronics and Drive Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130342828&doi=10.11591%2fijpeds.v13.i2.pp689-704&partnerID=40&md5=1f67c50cade64faaf5218c8af09d958c,Backstepping control; Backstepping-sliding mode control; Magneto-rheological damper; Semi-active control; Sliding mode control; Vehicle suspension Abena Malobé P.; Djondiné P.; Ntsama Eloundou P.; Abena Ndongo H.,Improvement of the energy production of a photovoltaic-wind hybrid system using NF-PSO MPPT,2022,Journal of Renewable Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85183844178&doi=10.54966%2fjreen.v25i1.1068&partnerID=40&md5=1b900f80c78a67cb3efbf14b3b72b390,Cuckoo; Neuro-Fuzzy; Oscillations; Particle Swarm Optimization; Supervisor Zafar M.H.; Khan N.M.; Mansoor M.; Khan U.A.,Towards green energy for sustainable development: Machine learning based MPPT approach for thermoelectric generator,2022,Journal of Cleaner Production,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127481211&doi=10.1016%2fj.jclepro.2022.131591&partnerID=40&md5=aa45153905474f318d53e5d151121daf,Flow direction optimization algorithm (FDA); Maximum power point tracking (MPPT); Swarm intelligence (SI); Thermoelectric generator (TEG) Nassef A.M.; Houssein E.H.; Helmy B.E.-D.; Rezk H.,Modified honey badger algorithm based global MPPT for triple-junction solar photovoltaic system under partial shading condition and global optimization,2022,Energy,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85131450500&doi=10.1016%2fj.energy.2022.124363&partnerID=40&md5=85a0e94e03e05f99bd7fbbf2027f535d,Dimension learning hunting (DLH); Honey badger algorithm (HBA); Metaheuristic algorithms (MHs); Modified honey badger algorithm; Renewable energy; Solar cell Naveen Kumar M.; Chidanandappa R.,Novel design and simulation of fuzzy controller for turn-on & turn-off angle in coordination with SRM speed control for electric vehicles,2022,Indonesian Journal of Electrical Engineering and Informatics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85134015005&doi=10.52549%2fijeei.v10i2.3700&partnerID=40&md5=95a25046a94cfe2b1ae05e88f335195b,Integral Absolute Error (IAE); Integral Square Error (ISE); Integral Time Absolute Error (ITAE); Switched Reluctance Motor (SRM) Fayad S.A.E.E.S.; Shaban M.; Attia M.; Abdelwahab S.A.M.,Performance Enhancement of Speed and Position Control for DC Servo Motor Using Artificial Intelligence Technique,2022,International Journal on Electrical Engineering and Informatics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140019568&doi=10.15676%2fijeei.2022.14.3.4&partnerID=40&md5=63e026f0ad820b413690ad125a7ac1f9,DC Servo Motor; Fuzzy Logic Controller (FLC); Proportional Integral Derivative (PID) Cotfas D.T.; Cotfas P.A.; Mahmoudinezhad S.; Louzazni M.,Critical factors and parameters for hybrid Photovoltaic-Thermoelectric systems; review,2022,Applied Thermal Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85134351837&doi=10.1016%2fj.applthermaleng.2022.118977&partnerID=40&md5=d41523782ef6d62a8492f06ccc87e95c,Critical parameters; Hybrid systems; Photovoltaic cells and panels; Thermoelectric generators Praveenkumar S.; Gulakhmadov A.; Agyekum E.B.; T. Alwan N.; Velkin V.I.; Sharipov P.; Safaraliev M.; Chen X.,Experimental Study on Performance Enhancement of a Photovoltaic Module Incorporated with CPU Heat Pipe—A 5E Analysis,2022,Sensors,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137603512&doi=10.3390%2fs22176367&partnerID=40&md5=74e81b65e0de5bff48513801dbc51d11,CPU fanless heat pipes; embodied energy; energy; exergy; LCE; photovoltaic Fan Y.; Wang P.; Heidari A.A.; Chen H.; HamzaTurabieh; Mafarja M.,Random reselection particle swarm optimization for optimal design of solar photovoltaic modules,2022,Energy,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85114667095&doi=10.1016%2fj.energy.2021.121865&partnerID=40&md5=0f04f29b7ab862a14890f1cbfb6502be,Cuckoo search; Double-diode model; Particle swarm optimization; Single-diode model; Solar photovoltaic system Moussa M.A.; Derrouazin A.; Latroch M.; Aillerie M.,A hybrid renewable energy production system using a smart controller based on fuzzy logic,2022,Electrical Engineering and Electromechanics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85131733236&doi=10.20998%2f2074-272X.2022.3.07&partnerID=40&md5=a3c8a6d9eef8448e3c0343d38f1e4117,battery storage; fuzzy logic; hybrid energy system; renewable energy; smart management Abdalla S.A.; Abdullah S.S.; Kassem A.M.,Performance enhancement and power management strategy of an autonomous hybrid fuel cell/wind power system based on adaptive neuro fuzzy inference system,2022,Ain Shams Engineering Journal,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121103548&doi=10.1016%2fj.asej.2021.101655&partnerID=40&md5=6cee2c76e2e0e3657b43f71b4617b195,ANFIS; Fuel cell; Fuzzy logic; IM; PMSG; Renewable power generation; Wind power Mukhatov A.; Thao N.G.M.; Do T.D.,Linear Quadratic Regulator and Fuzzy Control for Grid-Connected Photovoltaic Systems,2022,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126534413&doi=10.3390%2fen15041286&partnerID=40&md5=9445c63908564fccecedca9e44f22954,Fuzzy control; Grid-connected PV system; Incremental conductance algorithm; Linear quadratic regulator; Maximum power point tracking; Unity power factor Silaa M.Y.; Barambones O.; Bencherif A.,A Novel Adaptive PID Controller Design for a PEM Fuel Cell Using Stochastic Gradient Descent with Momentum Enhanced by Whale Optimizer,2022,Electronics (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137411517&doi=10.3390%2felectronics11162610&partnerID=40&md5=b5e94f2852cd47520c928383c6cd9fd7,PID controller; proton exchange membrane fuel cell; stochastic gradient descent; stochastic gradient descent with momentum; whale optimization algorithm Nivas M.; Naidu R.K.P.R.; Mishra D.P.; Salkuti S.R.,Modeling and analysis of solar-powered electric vehicles,2022,International Journal of Power Electronics and Drive Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85125563180&doi=10.11591%2fijpeds.v13.i1.pp480-487&partnerID=40&md5=c9cad338a8d34a28e652c7c0833c7f17,Brushless DC motor; Buck-boost converter; Maximum power point tracker; Perturb and observe; Renewable energy; Solar-powered electric vehicle Pervez M.; Kamal T.; Fernández-Ramírez L.M.,A novel switched model predictive control of wind turbines using artificial neural network-Markov chains prediction with load mitigation,2022,Ain Shams Engineering Journal,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85115650790&doi=10.1016%2fj.asej.2021.09.004&partnerID=40&md5=41ebdcce4b28398b5ed676951f0a8f72,Artificial neural networks-Markov chain ANN-MC; Finite control set; Load mitigation; Model predictive control MPC Ganapathee M.; Alavandar S.; Kasinathan P.; Sowmmiya U.; Ramachandaramurthy V.K.; Pachaivannan N.,Evaluation of hybrid controllers for space vector modulation-inverter driven permanent magnet synchronous motor-pump assembly,2022,ISA Transactions,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85115611065&doi=10.1016%2fj.isatra.2021.09.001&partnerID=40&md5=59d2b26bffad375e15f9281df4640c87,Controllers for PMSM; Hybrid controllers; PMSM; Speed regulation Yang P.; Peng Y.; Xuan Y.; Chen X.; Liu X.,Multi-Input Variable Structure Converter with Optimal Power Extraction Strategy for Energy Harvesting,2022,IEEE Journal on Emerging and Selected Topics in Circuits and Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124224944&doi=10.1109%2fJETCAS.2022.3148291&partnerID=40&md5=76e4aaf75e8cd4bf58649dcba6ee905e,energy harvesting; GaN; impedance adjustment; Multi-input converter; variable structure Chandrarathna S.C.; Lee J.-W.,A Self-Resonant Boost Converter for Photovoltaic Energy Harvesting With a Tracking Efficiency >90% Over an Ultra-Wide Source Range,2022,IEEE Journal of Solid-State Circuits,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85120069628&doi=10.1109%2fJSSC.2021.3127216&partnerID=40&md5=ba8f986414ff3113296f1fd259487c49,Maximum power point tracking (MPPT); self-resonant boost converter; solar energy harvester; ultra-wide source tracking Hilali A.; Mardoude Y.; Akka Y.B.; Alami H.E.; Rahali A.,"Design, modeling and simulation of perturb and observe maximum power point tracking for a photovoltaic water pumping system",2022,International Journal of Electrical and Computer Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129653862&doi=10.11591%2fijece.v12i4.pp3430-3439&partnerID=40&md5=117f4f7251f491501b8aa1805a2bfcb1,Buck converter; DC motor; Maximum power point tracking; Photovoltaic model; Water pump Utomo S.B.; Setiawan I.; Fajar B.; Winoto S.H.; Marwanto A.,Optimizing of the installed capacity of hybrid renewable energy with a modified MPPT model,2022,International Journal of Electrical and Computer Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85116448704&doi=10.11591%2fijece.v12i1.pp73-81&partnerID=40&md5=5964df9f662e30c3a10e36860cacfab1,MPPT; PV cells; Renewable energy; Wind turbine Kerid R.; Bounnah Y.,Modeling and parameter estimation of solar photovoltaic based MPPT control using EKF to maximize efficiency,2022,Bulletin of Electrical Engineering and Informatics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85135994143&doi=10.11591%2feei.v11i5.3782&partnerID=40&md5=e1a5a823b580f305a45f3e1dee48f172,Efficiency; EKF; Incremental conductance; MPPT; Photovoltaic; Sensor less control Pattnaik S.; Kumar M.R.; Mishra S.K.; Gautam S.P.; Appasani B.; Ustun T.S.,DC Bus Voltage Stabilization and SOC Management Using Optimal Tuning of Controllers for Supercapacitor Based PV Hybrid Energy Storage System,2022,Batteries,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140466271&doi=10.3390%2fbatteries8100186&partnerID=40&md5=8f8564afd61430b267ea5778117842ca,batteries; DC bus voltage stabilization; fractional order PI controller; photovoltaic; PI controller; SOC consumption; supercapacitor; tilt-integral controller Muzawi R.; Irawan Y.; Akhiyar D.; Setiawan D.,Pattern Lock and GPS-Based Motorcycle Security System,2022,International Journal of Engineering Trends and Technology,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127507817&doi=10.14445%2f22315381%2fIJETT-V70I3P221&partnerID=40&md5=0deb24f0ba0e631c17fdec9c20ac5e88,GPS Neo 6; IoT; Motorcycle; Pattern Lock; Raspberry Pi 3 Tonolo E.A.; Soares J.W.M.; Romaneli E.F.R.; Badin A.A.,Current Sensorless MPPT With a CCM Interleaved Boost Converter for Renewable Energy System,2022,IEEE Transactions on Power Electronics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128693711&doi=10.1109%2fTPEL.2022.3166747&partnerID=40&md5=955f0c10e1e2f78db73e72c9eb27d614,Interleaved boost converter; maximum power point tracker; power conversion; soft switching; voltage follower Thangam T.; Muthuvel K.,PFoPID CONTROL DESIGN OF GRID-CONNECTED PV INVERTER FOR MPPT USING HYBRID ALGORITHM,2022,International Journal of Power and Energy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159308237&doi=10.2316%2fJ.2022.203-0232&partnerID=40&md5=4aae61c1acc217f79db113bbdfbf9527,energy efficiency; irradiance and temperature; MPPT; P&O system; voltage Eluri H.; Gopichand Naik M.,Energy Management System and Enhancement of Power Quality with Grid Integrated Micro-Grid using Fuzzy Logic Controller,2022,International Journal of Electrical and Electronics Research,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85134353040&doi=10.37391%2fIJEER.100234&partnerID=40&md5=8dfed63f9ade750344449dcab74085b8,EMS; FLC; Incremental conductance (IC); Microgrid; MPPT; P&O Khan M.J.,An AIAPO MPPT controller based real time adaptive maximum power point tracking technique for wind turbine system,2022,ISA Transactions,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108069010&doi=10.1016%2fj.isatra.2021.06.008&partnerID=40&md5=7ab603737e7a744a2fb55a2e7fb45204,FLC; MPP; MPPT; P&O; Wind speed; Wind Turbine; WTIG Pathak P.K.; Yadav A.K.; Padmanaban S.; Alvi P.A.,Design of Robust Multi-Rating Battery Charger for Charging Station of Electric Vehicles via Solar PV System,2022,Electric Power Components and Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142178647&doi=10.1080%2f15325008.2022.2139870&partnerID=40&md5=a46c6cb6f3b20c57a10492a7accc3bfc,battery charger; electric vehicle; MPPT scheme; robustness analysis; solar photovoltaic Shaker D.H.; Shneen S.W.; Abdullah F.N.; Aziz G.A.,Simulation Model of Single-Phase AC-AC Converter by Using MATLAB,2022,Journal of Robotics and Control (JRC),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142919640&doi=10.18196%2fjrc.v3i5.15213&partnerID=40&md5=86e8cd6734f67af6e10eabc628cc0149,Full Wave Converter (F. W. C); Half Wave Converter (H. W. C); Single-phase AC-AC converter Nouriani A.; Moradi H.,Variable speed wind turbine power control: A comparison between multiple MPPT based methods,2022,International Journal of Dynamics and Control,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103543892&doi=10.1007%2fs40435-021-00784-6&partnerID=40&md5=cd1f6af2a9834ab3f3913a3da714d6ae,Backstepping control; FAST validation; H-feedback linearization control; PI-neural network control; Power optimization; Sliding mode control; Variable speed wind turbine Majdoul R.; Touati A.; Ouchatti A.; Taouni A.; Abdelmounim E.,"Comparison of backstepping, sliding mode and PID regulators for a voltage inverter",2022,International Journal of Electrical and Computer Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85116450599&doi=10.11591%2fijece.v12i1.pp166-178&partnerID=40&md5=2bc195390f3aad82129c54127de80e18,Averaging model; Backstepping; DC-AC converter; Lyapunov; Nonlinear control; Sliding mode; Voltage inverter Noh Y.-S.; Seo J.-I.; Kim H.-S.; Lee S.-G.,A Reconfigurable DC-DC Converter for Maximum Thermoelectric Energy Harvesting in a Battery-Powered Duty-Cycling Wireless Sensor Node,2022,IEEE Journal of Solid-State Circuits,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126336663&doi=10.1109%2fJSSC.2022.3152261&partnerID=40&md5=3d3b6f764e3c452d79e45083b87c5a91,DC-DC converter; energy harvesting; power management integrated circuit (PMIC); thermoelectric generator (TEG); wireless sensor node (WSN) Qi A.; Zhao D.; Yu F.; Heidari A.A.; Chen H.; Xiao L.,Directional mutation and crossover for immature performance of whale algorithm with application to engineering optimization,2022,Journal of Computational Design and Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127805643&doi=10.1093%2fjcde%2fqwac014&partnerID=40&md5=855aaf448d8ed605e3a150554848440a,engineering design; metaheuristic; single-objective optimization; swarm intelligence; whale optimization algorithm S M.; S M.,Nonlinear PID (N-PID) Controller for SSSP Grid Connected Inverter Control of Photovoltaic Systems,2022,Electric Power Systems Research,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132354989&doi=10.1016%2fj.epsr.2022.108175&partnerID=40&md5=55fd22e322373399e906b838b7215834,Inverter control; Maximum power point tracking; Nonlinear proportional integral derivative control; Photovoltaic systems; Popov's stability criterion; Single stage single phase grid connected system Shawqran A.M.; El-Marhomy A.; Attia M.A.; Kamh M.Z.,Novel blade angle controllers techniques based on heuristics algorithms,2022,Ain Shams Engineering Journal,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127242119&doi=10.1016%2fj.asej.2022.101782&partnerID=40&md5=8d9dae57f7238df19eda1d7946715100,Adaptive PI; Blade angle; Fractional order; Second order amplifier; Wind energy Roh H.; Ji Y.; Sim J.-Y.,An Auto-Configurable Dual-Mode MPPT for Energy Harvesting With 12 nW-180 mW Conversion Range,2022,IEEE Transactions on Circuits and Systems II: Express Briefs,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85133815033&doi=10.1109%2fTCSII.2022.3185495&partnerID=40&md5=80d3f1570fcdddf78464aea1ccb47bdf,DC-DC converter; energy harvesting; fractional open-circuit voltage (FOCV); hill-climbing; maximum power point tracking (MPPT); power management; quiescent current Mandourarakis I.; Gogolou V.; Koutroulis E.; Siskos S.,Integrated Maximum Power Point Tracking System for Photovoltaic Energy Harvesting Applications,2022,IEEE Transactions on Power Electronics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126304466&doi=10.1109%2fTPEL.2022.3156400&partnerID=40&md5=ed252e22d587a23b8fad71de8f9d5b8d,DC/DC converter; energy harvesting; integrated circuit (IC); maximum power point tracking (MPPT); photovoltaic (PV) Ahangarkolaei J.M.; Izadi M.; Nouri T.,Applying a Sliding Mode Controller to Maximum Power Point Tracking in a Quasi Z-Source Inverter Based on the Power Curve of a Photovoltaic Cell,2022,Electronics (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85136438965&doi=10.3390%2felectronics11142164&partnerID=40&md5=9f7f8abf0080458ebbaf4185fe0e7b7c,maximum power point tracking (MPPT); photovoltaics (PV); quasi Z-source inverter (qZSI); sliding mode controller (SMC) Bahri M.; Talea M.; Bahri H.; Aboulfatah M.,A New Control Strategy for Three Phase Grid Connected PV System Under Severe Partial Shading Conditions,2022,International Journal of Intelligent Engineering and Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126818700&doi=10.22266%2fijies2022.0430.33&partnerID=40&md5=3ea664a8b84fc80997c0910d115b0378,Ann; Gmppt; Grid connected; Partial shading conditions; Photovoltaic system; Synchronization Katoch M.; Dahiya V.; Yadav S.K.,A Review on Recent Advancement in Solar Photovoltaic System,2022,International Review of Mechanical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85156212367&doi=10.15866%2fireme.v16i12.23046&partnerID=40&md5=386465f957a14fc8c52368692cb8ea13,Efficiency; Performance; Photo-Voltaic System; Renewable Energy; Solar Collectors; Solar Energy Kececioglu O.F.,Design of type-2 fuzzy logic controller optimized with firefly algorithm for maximum power point tracking of photovoltaic system based on super lift Luo converter,2022,"International Journal of Numerical Modelling: Electronic Networks, Devices and Fields",https://www.scopus.com/inward/record.uri?eid=2-s2.0-85125410864&doi=10.1002%2fjnm.2994&partnerID=40&md5=d91117c7737293596a30c2e358c3c4c5,firefly algorithm; MPPT; super lift Luo converter; Type-2 FLC Liu X.; Calhoun B.H.; Li S.,"A Sub-nW 93% Peak Efficiency Buck Converter With Wide Dynamic Range, Fast DVFS, and Asynchronous Load-Transient Control",2022,IEEE Journal of Solid-State Circuits,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127735444&doi=10.1109%2fJSSC.2022.3161617&partnerID=40&md5=f817073abd0b45129027c3738220897e,Asynchronous control; buck converter; fast dynamic voltage and frequency scaling (DVFS); fast load-transient response (FLTR); high efficiency; sub-nW quiescent power; wide dynamic range Patra A.K.; Rath D.,Design of PV System based on 3-Degree of Freedom Fractional Order Tilt-Integral-Derivative Controller with Filter,2022,Journal of The Institution of Engineers (India): Series B,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128868150&doi=10.1007%2fs40031-022-00739-1&partnerID=40&md5=cb6be1625a70cf27c8c8305afd43f161,3DOF-FOTIDCF; Converter; Harmonic; HGAPSO; RSMLI Gautam A.K.; Tariq M.; Pandey J.P.; Verma K.S.; Urooj S.,Hybrid Sources Powered Electric Vehicle Configuration and Integrated Optimal Power Management Strategy,2022,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141505157&doi=10.1109%2fACCESS.2022.3217771&partnerID=40&md5=82536038ed2471417ffebb65ff5246fd,architecture; fuel economy; Full electric vehicle; hybrid electric vehicle; intelligent transportation; offline EMS; online EMS; optimal control strategy; optimization-based EMS; real-time optimal power management; vehicle performance Ngo S.; Chiu C.-S.; Ngo T.-D.,A Novel Horse Racing Algorithm Based MPPT Control for Standalone PV Power Systems,2022,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140592388&doi=10.3390%2fen15207498&partnerID=40&md5=ae997b45f5fb51e7b443d40db3c052da,horse racing algorithm (HRA); maximum power point tracking (MPPT); partial shading influence; photovoltaic (PV) power; PV power conversion system Akpolat A.N.; Habibi M.R.; Baghaee H.R.; Dursun E.; Kuzucuoglu A.E.; Yang Y.; Dragicevic T.; Blaabjerg F.,Dynamic Stabilization of DC Microgrids Using ANN-Based Model Predictive Control,2022,IEEE Transactions on Energy Conversion,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117102873&doi=10.1109%2fTEC.2021.3118664&partnerID=40&md5=c82cc7135ac00e81f3670ea323f031f2,Artificial neural network (ANN); battery energy storage system (BESS); DC microgrids; model predictive controller (MPC); photovoltaics (PVs) Ponmalar S.J.; Prasad V.; Kannadasan R.,An improved intelligent technique for maximum power point tracking under partial shading conditions of photo voltaic system,2022,Journal of Intelligent and Fuzzy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85145663324&doi=10.3233%2fJIFS-220892&partnerID=40&md5=996a98ad11d5b74e5f4f425ff3e8d131,and particle swarm optimization (PSO); ant colony optimization (ACO); black widow optimization (BWO); gravitational search algorithm (GSA); maximum power point tracking (MPPT); Partial shading; photovoltaic (PV); recurrent neural network (RNN) Mahmoud M.F.; Mohamed A.T.; Swief R.A.; Said L.A.; Radwan A.G.,Arithmetic optimization approach for parameters identification of different PV diode models with FOPI-MPPT,2022,Ain Shams Engineering Journal,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85120384786&doi=10.1016%2fj.asej.2021.10.007&partnerID=40&md5=ba2992356794bc7cdaf7865696d6416a,AOA; Boost converter; FOPID; Fractional order circuits; MPPT algorithms; Optimization algorithms; Photo-voltaic; PID Rajesh P.; Shajin F.H.; Rajani B.; Sharma D.,An optimal hybrid control scheme to achieve power quality enhancement in micro grid connected system,2022,"International Journal of Numerical Modelling: Electronic Networks, Devices and Fields",https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129382918&doi=10.1002%2fjnm.3019&partnerID=40&md5=b42c4b3be6f26f72f392fb91b6e1c2ea,active with reactive power; micro grid; power quality enhancement Suwarno I.; Finayani Y.; Rahim R.; Alhamid J.; Al-Obaidi A.R.,Controllability and Observability Analysis of DC Motor System and a Design of FLC-Based Speed Control Algorithm,2022,Journal of Robotics and Control (JRC),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85131232269&doi=10.18196%2fjrc.v3i2.10741&partnerID=40&md5=d8f214489e8fc1f1a0677ef3500adc31,controllability; DC motor; Fuzzy logic controller; observability; speed controller Dhotre M.R.; Thakre P.V.; Deshmukh V.M.,A Novel Method for Implementing MPPT Based Photovoltaic Closed Loop Flyback Inverter with STM32F407VG Controller using Waijung Tool,2022,International Journal of Engineering Trends and Technology,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85136864771&doi=10.14445%2f22315381%2fIJETT-V70I8P220&partnerID=40&md5=12e8325f9ee5e961ca60042323ffdc62,Flyback inverter; Maximum power point tracking (MPPT); Perturb and observe method(P&O); Photovoltaic (PV) system; Pulse width modulation (PWM) Yuan X.; Wu W.,The WASPAS and AHP optimization methods applied on vibro-diagnostic models for rotational machines,2022,Engineering with Computers,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103393025&doi=10.1007%2fs00366-021-01377-9&partnerID=40&md5=54711c9d260342f4cf2cd806caeef7a5,Analytic hierarchy process (AHP); Multi-criteria decision-making (MCDM); Rotational machines; Vibro-diagostics; Weighted aggregated sum product assessment (WASPAS) Mollaee H.; Ghamari S.M.; Khavari F.,Self-tuning regulator adaptive controller design for DC-DC boost converter with a novel robust improved identification method,2022,IET Power Electronics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129804346&doi=10.1049%2fpel2.12310&partnerID=40&md5=5deaeed3cae78ed375b737d49f31f4ec, Gulzar M.M.; Murawwat S.; Sibtain D.; Shahid K.; Javed I.; Gui Y.,Modified Cascaded Controller Design Constructed on Fractional Operator ‘β’ to Mitigate Frequency Fluctuations for Sustainable Operation of Power Systems,2022,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140635307&doi=10.3390%2fen15207814&partnerID=40&md5=c8752ddb11d59b5377e6a3e569afabd2,dragonfly search algorithm; fractional operator; load frequency control; modified cascade controller; renewable energy resources Setiawan I.; Facta M.; Andromeda T.; Hermawan; Syakur A.,Unified and Separated Buck/Boost Averaged Current Control Strategies of Bidirectional DC-DC Converter for DC Microgrid Systems,2022,International Review of Automatic Control,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141209504&doi=10.15866%2fireaco.v15i4.22115&partnerID=40&md5=0a4b2b9f8fca0e37682f605429698654,Bidirectional DC-DC Converter; Current Controller Proportional Integral Control; Feedforward Control Sousa S.M.; Gusman L.S.; Lopes T.A.S.; Pereira H.A.; Callegari J.M.S.,MPPT algorithm in single loop current-mode control applied to dc–dc converters with input current source characteristics,2022,International Journal of Electrical Power and Energy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123029683&doi=10.1016%2fj.ijepes.2021.107909&partnerID=40&md5=be3d33d7771fdea80f7ae3d2f4d9ebe3,dc–dc converters; IdP; MPPT; PV systems Kumar V.; Mitra A.; Shaklya O.; Sharma S.; Rana K.P.S.,An adaptive robust fuzzy PI controller for maximum power point tracking of photovoltaic system,2022,Optik,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128446958&doi=10.1016%2fj.ijleo.2022.168942&partnerID=40&md5=f90045d8568131b8107b914d6ba81f8b,Adaptive control for MPPT; Adaptive fuzzy proportional-integral controller; MPPT; Particle swarm optimization; Photovoltaic system Mitra L.; Rout U.K.,Optimal control of a high gain DC-DC converter,2022,International Journal of Power Electronics and Drive Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124884252&doi=10.11591%2fijpeds.v13.i1.pp256-266&partnerID=40&md5=ea6b7783c9cc3a47a31064cba5743c66,Bacteria foraging algorithm; High gain DC-DC converter; Particle swarm optimisation; Photovoltaic systems; PID controller Sheikh Ahmadi S.H.; Karami M.; Gholami M.; Mirzaei R.,Improving MPPT Performance in PV Systems Based on Integrating the Incremental Conductance and Particle Swarm Optimization Methods,2022,Iranian Journal of Science and Technology - Transactions of Electrical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85116277089&doi=10.1007%2fs40998-021-00459-0&partnerID=40&md5=8fc9be2404183e064b0cad0f433143b9,Incremental conductance; MPPT strategies; Particle swarms optimization; PV systems Elgbaily M.; Anayi F.; Elgamli E.,Design of a DC to DC Converter for a Residential Grid Connected Solar Energy System †,2022,Engineering Proceedings,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144500052&doi=10.3390%2fECP2022-12620&partnerID=40&md5=e9808d662cbcf288244945ef97760576,DC–DC boost converter; maximum power point tracking MPPT; Particle Swarm Optimization (PSO); Perturb and Observe (P&O); photovoltaic system (PV); PI controller Stephen A.A.; Musasa K.; Davidson I.E.,Modelling of Solar PV under Varying Condition with an Improved Incremental Conductance and Integral Regulator,2022,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127388073&doi=10.3390%2fen15072405&partnerID=40&md5=e2f629bc6d76f05c030386c502345ce5,boost converter; converter restoration; incremental conductance; peak power point tracking; solar photovoltaic system Niazi K.A.K.; Kerekes T.; Dolara A.; Yang Y.; Leva S.,Performance Assessment of Mismatch Mitigation Methodologies Using Field Data in Solar Photovoltaic Systems,2022,Electronics (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132299664&doi=10.3390%2felectronics11131938&partnerID=40&md5=b81d98824f6f6c92d1221053ebc869a9,bypass diode; DC power optimizer; differential power processing (DPP); mismatch mitigation techniques; partial shading; photovoltaic (PV) system Akter F.; Roy T.K.; Islam M.S.; Alkhateeb A.F.; Mollah M.A.,Design of a Nonlinear Integral Terminal Sliding Mode Controller for a PEM Fuel Cell Based on a DC-DC Boost Converter,2022,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139261074&doi=10.1109%2fACCESS.2022.3205733&partnerID=40&md5=850277a01f87d3ebddd8e19de9d35ddc,Control Lyapunov function; DC-DC boost converter; fuel cell; integral terminal sliding mode controller Madni Z.; Guesmi K.; Benalia A.,Backstepping global and structural stabilization of direct current/direct current boost converter,2022,International Journal of Circuit Theory and Applications,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124155468&doi=10.1002%2fcta.3237&partnerID=40&md5=b20f89c7954f778b3b63bce11da0cced,backstepping; bifurcation; boost converter; global stability; input to state stability; structural stability; switching frequency Traore M.; Ndiaye A.; Mbodji S.,A comparative study of meta-heuristic and conventional optimization techniques of grid connected photovoltaic system,2021,International Journal of Power Electronics and Drive Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85118923669&doi=10.11591%2fijpeds.v12.i4.pp2492-2500&partnerID=40&md5=04ce3cb4a50fa8c86036e409aef33240,Optimization algorithm; Proportional integral; PV-Grid system; Renewable energy Derbeli M.; Charaabi A.; Barambones O.; Napole C.,High-performance tracking for proton exchange membrane fuel cell system pemfc using model predictive control,2021,Mathematics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107215068&doi=10.3390%2fmath9111158&partnerID=40&md5=44cf7cf392853b4d14664543982b2819,DC–DC boost converter; Fuel cell; Model predictive control; MPC; PEM; PEMFC; Power electronic converter; Proton electrolyte membrane; Proton exchange membrane Al-Zubaydi N.A.H.,Smart Technology Based Empirical Mode Decomposition (EMD) Approach for Autonomous Transmission Line Fault Detection Protection,2022,EAI Endorsed Transactions on Energy Web,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85131042289&doi=10.4108%2few.v9i38.733&partnerID=40&md5=fb9de55c7d203850fc7acea61a4e2e64,and Autonomous System; DWT; EMD; Malfunction; Smart House; Transmission Line Subramanian A.P.S.; Sutha B.S.; Britto K.R.A.,Cohesive DS-PID and FQL Control Mechanisms to Enhance the Performance of the Electric Vehicle System,2022,Elektronika ir Elektrotechnika,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129481207&doi=10.5755%2fj02.eie.30492&partnerID=40&md5=2a00eea520f6d2be85d27b9fbd6e675e,Dual fold Luo DC-DC converter; Dynamic supervision-PID controller; Electric vehicle; Fractional quadratic linearizer (FQL); Maximum peak point tracking (MPPT); Solar photovoltaic system Salim; Ohri J.,Controlling and monitoring of a solar-powered DC motor using a wireless sensor network,2022,IETE Journal of Research,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85131077385&doi=10.1080%2f03772063.2022.2073274&partnerID=40&md5=e6dbd297c04ab10fe373e7fe40972c63,ANN; Data Dashboard; FPID; MPPT; solar energy; WSN Kaul S.; Tiwari N.; Yadav S.; Kumar A.,Comparative Analysis and Controller Design for BLDC Motor Using PID and Adaptive PID Controller,2021,Recent Advances in Electrical and Electronic Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124876825&doi=10.2174%2f2352096514666210823152446&partnerID=40&md5=0979c52f9899943a56789ac0f926a6fe,APID controller; BLDC motor; Decoder; Inverter; PID controller; Speed control El Hariz Z.; Hicham A.; Mohammed D.,A novel optimiser of MPPT by using PSO-AG and PID controller,2022,International Journal of Ambient Energy,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108312046&doi=10.1080%2f01430750.2021.1934116&partnerID=40&md5=8cd6c07d5a5dff84adb24742580ecc69,genetic algorithm; MPPT algorithm; Particle Swarm of Optimisation; PID controller; Solar energy Bhos C.D.; Nasikkar P.S.,Optimization-based maximum power extraction from solar photovoltaic system under non-uniform irradiance,2022,International Journal of Ambient Energy,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85125912783&doi=10.1080%2f01430750.2022.2037456&partnerID=40&md5=b0ccf8c97d9470be1405fc55a99cf346,Cuckoo Search; MPPT; Particle Swarm Optimization; Photovoltaic; solar Foughali Y.; Mankour M.; Sekour M.; Azzeddine H.A.; Larbaoui A.; Chaouch D.-E.; Berka M.,A RBF artificial neural network to predict a fuel cell maximum power point,2022,Przeglad Elektrotechniczny,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85134378763&doi=10.15199%2f48.2022.07.17&partnerID=40&md5=8b52e823d88e728c5aa9db8d73b02618,Artificial neural network (ANN); Maximum power point tracker (MPPT); Proton exchange membrane fuel cell (PEMFC) Wu K.-K.; Wang H.-Y.; Chen C.; Tao T.; Fan Y.-Y.; Zhang H.; Liu Y.-X.,Improved voltage transfer method for lithium battery string management chip,2021,"IET Circuits, Devices and Systems",https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102838915&doi=10.1049%2fcds2.12060&partnerID=40&md5=21669083972d63649c3cc5f62be1fc59, Kiran S.R.; Basha C.H.H.; Singh V.P.; Dhanamjayulu C.; Prusty B.R.; Khan B.,Reduced Simulative Performance Analysis of Variable Step Size ANN Based MPPT Techniques for Partially Shaded Solar PV Systems,2022,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129625916&doi=10.1109%2fACCESS.2022.3172322&partnerID=40&md5=d39c288d030fb5c6461b409d249ebfc7,ANN; boost converter; duty cycle; efficiency; high tracing speed of MPP; less convergence time; less oscillations; less settling time Meira Amaral da Luz C.; Ferreira Silva Í.; dos Santos Vicente P.; Moreira Vicente E.; Tofoli F.L.; Ribeiro E.R.,Maximum power point tracking technique based on sweeping the characteristic curve of the photovoltaic module,2022,Sustainable Computing: Informatics and Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85120155661&doi=10.1016%2fj.suscom.2021.100638&partnerID=40&md5=c6ea6d770f81d76182174698c4f8eb20,Curve sweep; Maximum power point tracking; Partial shading; Photovoltaic systems; SEPIC converter Chen C.-L.,Many-Objective Adaptive Fuzzy With Sliding Mode Control for a Class of Switching Power Converters Using Global Optimization,2022,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123374634&doi=10.1109%2fACCESS.2022.3144836&partnerID=40&md5=648fc370cfaeb02fc396bac2402982bb,Bridge circuits; Computational modeling; Control systems; DC-DC power converters; Measurement; Optimization; Particle swarm optimization Mirza A.F.; Mansoor M.; Zhan K.; Ling Q.,High-efficiency swarm intelligent maximum power point tracking control techniques for varying temperature and irradiance,2021,Energy,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85104432259&doi=10.1016%2fj.energy.2021.120602&partnerID=40&md5=0cf771f26880b1b4694755d12ed7784f,Global maxima (GM); Improved salp swarm algorithm (ISSA); Local maxima (LM); Maximum power point tracking (MPPT); Partial shading (PS); Photo voltaic (PV); Slime mould optimization (SMO) Sutikno T.; Pamungkas A.; Pau G.; Yudhana A.; Facta M.,A review of recent advances in metaheuristic maximum power point tracking algorithms for solar photovoltaic systems under the partial-shading conditions,2022,Indonesian Journal of Science and Technology,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129745383&doi=10.17509%2fijost.v7i1.45612&partnerID=40&md5=f0d5ceec573c68133a357b44d04a87ef,Metaheuristic algorithms; MPP tracking; Partial-shading condition; Power harvesting; Solar photovoltaic Nasir A.; Rasool I.; Sibtain D.; Kamran R.,Adaptive Fractional Order PID Controller Based MPPT for PV Connected Grid System Under Changing Weather Conditions,2021,Journal of Electrical Engineering and Technology,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107451041&doi=10.1007%2fs42835-021-00782-w&partnerID=40&md5=4ebf7af3df268988c54867c0d3c8b10a,Adaptive fractional PID control; Fuzzy logic control; Maximum power point tracking; Particle swarm optimization Fannakh M.; Elhafyani M.L.; Zouggar S.; Zahboune H.,Overall fuzzy logic control strategy of direct driven PMSG wind turbine connected to grid,2021,International Journal of Electrical and Computer Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111154289&doi=10.11591%2fijece.v11i6.pp5515-5529&partnerID=40&md5=f5172af4f09754d7bad1dad56eddd93b,Anti-windup compensation; Fuzzy logic control; Grid connection; MPPT; PMSG; Wind energy Ramu S.K.; Balaganesh R.K.; Paramasivam S.K.; Muthusamy S.; Panchal H.; Nuvvula R.S.S.; Kumar P.P.; Khan B.,A Novel High-Efficiency Multiple Output Single Input Step-Up Converter with Integration of Luo Network for Electric Vehicle Applications,2022,International Transactions on Electrical Energy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85138445898&doi=10.1155%2f2022%2f2880240&partnerID=40&md5=3fa42fcbe0c708f47683dc7a9c72670f, Pardhi P.K.; Sharma S.K.,High Gain Non Isolated DC Converter Employed in Single-Phase Grid-Tied Solar Photovoltaic Supply System,2021,IEEE Transactions on Industry Applications,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85112605938&doi=10.1109%2fTIA.2021.3095439&partnerID=40&md5=2c4e8774e68115d81e1c5ecaf2b9773e,DC converter; fuzzy logic control (FLC); maximum power harvesting (MPH); photovoltaic (PV) supply; voltage source converter (VSC) Rezk H.; Alhato M.M.; Al-dhaifallah M.; Bouallègue S.,A sine cosine algorithm-based fractional MPPT for thermoelectric generation system,2021,Sustainability (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117734502&doi=10.3390%2fsu132111650&partnerID=40&md5=f6ba6e64bd41f3c6c8e13204260c755b,Fractional PIλDμ control; MPPT; Sine cosine algorithm; Thermoelectric generator Dang V.-T.; Yang M.-G.; Jang C.-H.; Lee S.; Shim Y.; Baek K.-H.,A Highly Efficient Time-Based MPPT Circuit With Extended Power Range and Minimized Tuning Switching Frequency,2022,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132762458&doi=10.1109%2fACCESS.2022.3183280&partnerID=40&md5=31de2af4fd96649bd458a0978e3c1ec2,Energy harvesting system; extended power range; maximum power point tracking circuit; switched capacitor dc-dc converter Ahmad K.U.; Suhariningsih; Murdianto F.D.,Hybrid modified pso – ic methods based mppt to overcome partial shading,2021,International Journal on Electrical Engineering and Informatics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85112527853&doi=10.15676%2fijeei.2020.13.2.11&partnerID=40&md5=287993cda55b2708e58ab08fb19597d0,Incremental Conductance; Maximum Power Point Tracking (MPPT); Modified Particle Swarm Optimization (MPSO); Partial Shading Srikanth R.; Venkatesan M.; Subba Rao M.,"Design and performance evaluation of PID, Fuzzy logic and ANN controllers based MPPTs for hybrid electric vehicle applications",2022,International Journal of Ambient Energy,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096095116&doi=10.1080%2f01430750.2020.1846076&partnerID=40&md5=c5612d08d8b394ae8f73ebcd88d2e3e3,artificial neural network; Electric vehicle; fuzzy logic controller; high gain interleaved boost converter (HGIBC); maximum power point technique; proportional integral derivative controller Doubabi H.; Salhi I.; Chennani M.; Essounbouli N.,High Performance MPPT based on TS Fuzzy–integral backstepping control for PV system under rapid varying irradiance—Experimental validation,2021,ISA Transactions,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100952110&doi=10.1016%2fj.isatra.2021.02.004&partnerID=40&md5=5dd253a7c84ca0c5a320eef69182235d,DC–DC boost converter; Integral backstepping; Maximum power point tracking; Photovoltaic system; Takagi–Sugeno​ Fuzzy Mohamed S.A.; Tolba M.A.; Eisa A.A.; El-Rifaie A.M.,Comprehensive modeling and control of grid-connected hybrid energy sources using MPPT controller,2021,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113414080&doi=10.3390%2fen14165142&partnerID=40&md5=a9fc37a8230dbdceb01bddf6995dc756,DC-DC boost converter; DFIG; MPPT control technique; Photovoltaic array; Wind turbine Nejad H.D.; Nazari M.; Nazari M.; Mardan M.M.S.; Mohammadzadeh A.; Vu M.T.; Mosavi A.,Fuzzy State-Dependent Riccati Equation (FSDRE) Control of the Reverse Osmosis Desalination System With Photovoltaic Power Supply,2022,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137941663&doi=10.1109%2fACCESS.2022.3204270&partnerID=40&md5=bb2192bd5bbf9579d7bb2e3bdf372625,artificial intelligence; Fuzzy control; maximum power point tracking; photovoltaic system; reverse osmosis desalination; SDRE control Gulzar M.M.; Sibtain D.; Ahmad A.; Javed I.; Murawwat S.; Rasool I.; Hayat A.,An Efficient Design of Adaptive Model Predictive Controller for Load Frequency Control in Hybrid Power System,2022,International Transactions on Electrical Energy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85134641647&doi=10.1155%2f2022%2f7894264&partnerID=40&md5=4043bcc749894659e56ee1d044a5803d, Youcef D.; Khatir K.; Yassine B.,Design of neural network fractional-order backstepping controller for MPPT of PV systems using fractional-order boost converter,2021,International Transactions on Electrical Energy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85118559457&doi=10.1002%2f2050-7038.13188&partnerID=40&md5=420b04088d976e89829c0ddae9bcdcce, Padmanaban M.; Chinnathambi S.; Parthasarathy P.; Pachaivannan N.,"An Extensive Study on Online, Offline and Hybrid MPPT Algorithms for Photovoltaic Systems",2021,Majlesi Journal of Electrical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85120329450&doi=10.52547%2fmjee.15.3.1&partnerID=40&md5=162030b4d064d1ce9a87870c5db50ee5,Hybrid System; MPPT Algorithms; PV System; Renewable Energy; Solar Power Gundogdu A.,System Identification Based ARV-MPPT Technique for PV Systems Under Variable Atmospheric Conditions,2022,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130795870&doi=10.1109%2fACCESS.2022.3174107&partnerID=40&md5=0bcccdd71511b4cdd8102c0ec590eae7,Energy conversion; Energy management; MPPT algorithms; Photovoltaic energy; Renewable energy; System identification Boubakir A.; Touil S.-A.; Labiod S.; Boudjerda N.,A robust model-free controller for a three-phase grid-connected photovoltaic system based on ultra-local model,2021,Protection and Control of Modern Power Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121473545&doi=10.1186%2fs41601-021-00218-7&partnerID=40&md5=809e12a633f7889a600a83e2e04181f9,Maximum power point; Model-free control; Numerical differentiator; Photovoltaic system; Ultra-local model Farooqi A.; Othman M.M.; Musirin I.; Latip M.F.A.; Radzi M.A.M.; Abidin I.Z.; Mohammed D.S.S.,PV System Based Dynamic Voltage Restorer (DVR) in Water Pumping System for Agricultural Application,2021,Journal of Mechanical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85125843649&partnerID=40&md5=3ab1b1cd58b388c199039296967cb66f,Dynamic voltage restorer; Power quality issues; Pv irrigation system; Pv-grid; Renewable energy; Solar water pumping system de Brito M.A.G.; Prado V.A.; Batista E.A.; Alves M.G.; Canesin C.A.,Design procedure to convert a maximum power point tracking algorithm into a loop control system,2021,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111663750&doi=10.3390%2fen14154550&partnerID=40&md5=5753e625a925a00324b0cd0ee73d8f4e,Algorithms; Control loops; Energy harvesting; MPPT; Photovoltaic energy Ritter N.; Straub J.,Implementation of hardware-based expert systems and comparison of their performance to software-based expert systems,2021,Machines,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121725723&doi=10.3390%2fmachines9120361&partnerID=40&md5=0bf7accb5fd4f28d623a020f2d218e46,Efficacy; Electronic; Expert systems; Performance; Rule-fact network Yazıcı İ.; Yaylacı E.K.; Yalçın F.,Modified golden section search based MPPT algorithm for the WECS,2021,"Engineering Science and Technology, an International Journal",https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101878869&doi=10.1016%2fj.jestch.2021.02.006&partnerID=40&md5=c39b2122e00a0ceb5d4a9d7a9fe410a0,Golden section search; Maximum power point tracking; Wind power systems Bouksaim M.; Mekhfioui M.; Srifi M.N.,"Design and implementation of modified inc, conventional inc, and fuzzy logic controllers applied to a pv system under variable weather conditions",2021,Designs,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119153134&doi=10.3390%2fdesigns5040071&partnerID=40&md5=3a76db8463ef9e96d09cfab3179b4456,Boost converter; Fuzzy logic controller (FLC); Implementation; Incremental conductance (INC); Maximum power point tracking (MPPT); Modified incremental conductance; Photovoltaic system (PV) Ismail B.; Mohammed B.; Abdelkhalek O.; Elhadj S.,An experimental study of PV/T system using parabolic reflectors and heat exchanger,2021,Indonesian Journal of Electrical Engineering and Computer Science,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119914791&doi=10.11591%2fijeecs.v24.i3.pp1297-1306&partnerID=40&md5=cfc6995779541d7a7605ce903c5f05f4,Bi reflector; Cooling system; DCDC converter; Heat exchanger; Parabolic concentrator; PV/T system Sánchez A.G.S.; Pérez-Pinal F.J.; Rodríguez-Licea M.A.; Posadas-Castillo C.,Non-integer order approximation of a PID-type controller for boost converters,2021,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107872924&doi=10.3390%2fen14113153&partnerID=40&md5=f8b3a63e88a3a9ad73e3522905d2449b,DC–DC boost converter; Fractional-order controller; Iso-damping property; Non-minimum phase system; PID controller Savrun M.M.; İnci M.,Adaptive neuro-fuzzy inference system combined with genetic algorithm to improve power extraction capability in fuel cell applications,2021,Journal of Cleaner Production,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85104093338&doi=10.1016%2fj.jclepro.2021.126944&partnerID=40&md5=7ab4726e78177c51ebc2eaa86a0ff2cf,Fuel cell; GA-ANFIS; Maximum power extraction; Operational changes; Optimization Abdellatif W.S.E.; Mohamed M.S.; Barakat S.; Brisha A.,A fuzzy logic controller based mppt technique for photovoltaic generation system,2021,International Journal on Electrical Engineering and Informatics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85112579321&doi=10.15676%2fijeei.2020.13.2.9&partnerID=40&md5=6002a08d647148725c3589ce5d3016ea,Fuzzy logic controller; Incremental conductance; Maximum power point tracking; Perturbation and observation; Photovoltaic Saswat S.S.; Patra S.; Mishra D.P.; Salkuti S.R.; Senapati R.N.,Harnessing wind and solar PV system to build hybrid power system,2021,International Journal of Power Electronics and Drive Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85118943088&doi=10.11591%2fijpeds.v12.i4.pp2160-2168&partnerID=40&md5=2153a39cb69470f7b2b193d5addaa4fc,Battery; Converter; Hybrid power system; Photovoltaic cell; Wind energy Mirza A.F.; Mansoor M.; Zerbakht K.; Javed M.Y.; Zafar M.H.; Khan N.M.,High-efficiency hybrid PV-TEG system with intelligent control to harvest maximum energy under various non-static operating conditions,2021,Journal of Cleaner Production,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85114128322&doi=10.1016%2fj.jclepro.2021.128643&partnerID=40&md5=339e56198e76c5f403705cad28093927,Arithmetic optimization algorithm (AOA); Grey wolf optimization (GWO); Hybrid PV-TEG; Maximum power point tracking (MPPT); Photovoltaic (PV); Thermoelectric power generation (TEG) Du Y.; Liao Y.; Liu Y.; Ji J.,Research on photovoltaic system MPPT based on IFOINC algorithm,2022,International Journal of Low-Carbon Technologies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130015186&doi=10.1093%2fijlct%2fctab013&partnerID=40&md5=0b835e508ea9b3a7bc8d3ba8f87ea059,IFOINC; MATLAB/Simulink; MPPT; P & O; photovoltaic system Ali M.; Firdaus A.A.; Arof H.; Nurohmah H.; Suyono H.; Putra D.F.U.; Muslim M.A.,The comparison of dual axis photovoltaic tracking system using artificial intelligence techniques,2021,IAES International Journal of Artificial Intelligence,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121055366&doi=10.11591%2fIJAI.V10.I4.PP901-909&partnerID=40&md5=f7fec1236d4510bf522d8e18fc092ad2,Bat algorithm; Dual axis photovoltaic tracking system; PID controller Morales R.H.; Rohten J.A.; Garbarino M.N.; Munoz J.A.; Silva J.J.; Pulido E.S.; Espinoza J.R.; Andreu M.L.,A Novel Global Maximum Power Point Tracking Method Based on Measurement Cells,2022,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137936021&doi=10.1109%2fACCESS.2022.3205163&partnerID=40&md5=c3142a466d794ad64bcc00d3a662fb2d,DC-AC power converter; GMPPT; MPPT; partial shading algorithm; PV system Parada-Salado J.-G.; Rodríguez-Licea M.-A.; Soriano-Sanchez A.-G.; Ruíz-Martínez O.-F.; Espinosa-Calderon A.; Pérez-Pinal F.-J.,Study on multiple input asymmetric boost converters with simultaneous and sequential triggering,2021,Electronics (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107634890&doi=10.3390%2felectronics10121421&partnerID=40&md5=ef409d236dc4edfb63ea8e732bf289a4,Asymmetric converter; Discontinuous conduction mode; Multiple-input converter; Parallel boost; Sequential triggering; Simultaneous triggering Ahmed N.A.; Alajmi B.N.; Abdelsalam I.; Marei M.I.; AlHajri M.F.,Advanced Maximum Power Point Tracker for PV Systems Under Dusty Weather Environments,2022,IEEJ Transactions on Electrical and Electronic Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85116286826&doi=10.1002%2ftee.23488&partnerID=40&md5=2abaf8255015c8c0c4d6860d830c2dee,boost converter; dusty weather; maximum power point tracker; photovoltaic Zhou X.; Zhang Y.; Ma X.; Li G.; Wang Y.; Hu C.; Liang J.; Li M.,Performance characteristics of photovoltaic cold storage under composite control of maximum power tracking and constant voltage per frequency,2022,Applied Energy,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85115436213&doi=10.1016%2fj.apenergy.2021.117840&partnerID=40&md5=bf50aa8a4d1e0685b168eec535c3e24a,Cold storage; Composite control; Constant voltage per frequency control; Direct-driven compressor; Maximum power point tracking control; Photovoltaic array Mokhtar M.; Marei M.I.; Attia M.A.,Hybrid SCA and adaptive controller to enhance the performance of grid-connected PV system,2021,Ain Shams Engineering Journal,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105507430&doi=10.1016%2fj.asej.2021.03.019&partnerID=40&md5=a2d6aeab5255b00ef39b8047dfac048a,Adaptive Controller; Optimization; Photovoltaic system; PI controller; Shading effect Gao J.; Li W.; Li Q.; Zou Z.; Lu Y.,Mobile photovoltaic online charging MPPT technology based on variable step size disturbance approximation method; [基于变步长扰动逼近法的移动式在线光伏充电 MPPT 技术],2021,Chinese Journal of Ship Research,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85112552493&doi=10.19693%2fj.issn.1673-3185.01948&partnerID=40&md5=c81806564c0897998c99410548da69ed,Disturbance approximation method; Maximum power point tracking (MPPT); Photovoltaic (PV); Storage battery; Variable step size Zandieh M.; Kazemi A.; Ahmadi M.,A comprehensive insight into the application of machine learning approaches in predicting the separation efficiency of hydrocyclon,2021,Desalination and Water Treatment,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85120005127&doi=10.5004%2fdwt.2021.27691&partnerID=40&md5=bb579ba23ebf3601733c1125df4e755e,Artificial neural networks; Data science; Hydrocyclones; Machine learning algorithms; Sensitivity analysis Alahdal A.; Ammous A.; Ammous K.,Design and realization of an analog integrated circuit for maximum power point tracking of photovoltaic panels,2022,EPJ Photovoltaics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124402923&doi=10.1051%2fepjpv%2f2022002&partnerID=40&md5=444be0b97bc2b2641f0328ef4b5c340f,Analog technique; Cadence; CMOS technology; Integrated circuit (IC); Maximum power point tracking (MPPT); MPPT chip Karad S.G.; Thakur R.,Fractional order controller based maximum power point tracking controller for wind turbine system,2022,International Journal of Electronics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85109880461&doi=10.1080%2f00207217.2021.1941296&partnerID=40&md5=da3b34950d2dcbf43ea4e69ccb840da2,Fractional-order control; maximum power point control; Nedler-Mead optimisation; wound rotor induction generator Saafan M.M.; El-Gendy E.M.,IWOSSA: An improved whale optimization salp swarm algorithm for solving optimization problems,2021,Expert Systems with Applications,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85104982510&doi=10.1016%2fj.eswa.2021.114901&partnerID=40&md5=52c85f25b9792bdf69be61fc8c0ea817, Hou G.; Ke Y.; Huang C.,A flexible constant power generation scheme for photovoltaic system by error-based active disturbance rejection control and perturb & observe,2021,Energy,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111657539&doi=10.1016%2fj.energy.2021.121646&partnerID=40&md5=9839eb9761f3fa4620a7f0ee106b4633,Double-quantum chaotic social spider optimization; Error-based active disturbance rejection control; Parameters tuning; Photovoltaic constant power generation Panchariya R.; Syal P.,An improved current control charging scheme using neuro-fuzzy and fopid based mppt system for ev charging,2021,International Journal of Engineering Trends and Technology,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117148854&doi=10.14445%2f22315381%2fIJETT-V69I10P232&partnerID=40&md5=3ec647d81ec0d197d4b80066eebf14d4,Battery charging issues; Electrical vehicles; etc; FOPID controller; Intelligent systems; renewable energy Rezk H.; Aly M.; Fathy A.,A novel strategy based on recent equilibrium optimizer to enhance the performance of PEM fuel cell system through optimized fuzzy logic MPPT,2021,Energy,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85109687806&doi=10.1016%2fj.energy.2021.121267&partnerID=40&md5=9cbd7d45140440eeb325e0902398ed6f,Energy efficiency; Fuzzy logic control; MPPT; Optimization methods; PEM fuel Cell Bahri A.; Thameur A.; Mordjaoui M.; Bechouat M.; Sedraoui M.,An optimal tilt integral derivative applied to the regulation of dc link voltage in a stand-alone hybrid energy system,2021,Journal Europeen des Systemes Automatises,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85115377283&doi=10.18280%2fjesa.540410&partnerID=40&md5=7b6f378b8204925cb97abed22f777a56,Battery bank; Buck-boost converter; DC link voltage; Genetic algorithm; Photovoltaic system; Proportional-Integral-Derivative (PID); Tilt-Integral-Derivative (TID) Chadli H.; Chadli S.; Boutouba M.; Saber M.; Tahani A.,Hardware implementation and performance evaluation of microcontroller-based 7-level inverter using POD-SPWM technique,2021,Indonesian Journal of Electrical Engineering and Computer Science,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85109440090&doi=10.11591%2fijeecs.v23.i1.pp120-131&partnerID=40&md5=5d03191b39c49192a5413d9e990dae6e,7-level inverter; Multi-level inverters; Renewable energy; SPWM; THD Abdolrasol M.G.M.; Hannan M.A.; Suhail Hussain S.M.; Ustun T.S.; Sarker M.R.; Ker P.J.,Energy management scheduling for microgrids in the virtual power plant system using artificial neural networks,2021,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117415327&doi=10.3390%2fen14206507&partnerID=40&md5=6bb64f94db43fc6ea3a3275134058f92,Artificial neural network; Energy management; Multi-microgrids; Scheduling; Virtual power plant Elnozahy A.; Yousef A.M.; Abo-Elyousr F.K.; Mohamed M.; Abdelwahab S.A.M.,Performance improvement of hybrid renewable energy sources connected to the grid using artificial neural network and sliding mode control,2021,Journal of Power Electronics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103353190&doi=10.1007%2fs43236-021-00242-8&partnerID=40&md5=71587717ae153e538684d62217556515,Artificial neural network; Hybrid renewable energy system; Sliding mode control Amoorezaei A.; Khajehoddin S.A.; Rezaei N.; Moez K.,A Low-Cost Cell-Level Differential Power Processing CMOS IC for Single Junction Photovoltaic Cells,2021,IEEE Transactions on Power Electronics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85112176488&doi=10.1109%2fTPEL.2021.3089551&partnerID=40&md5=af7d29f2c57d7d2331e32dcd9aa9a7e8,Differential power processing; integrated circuits; maximum power point tracking; optimizers; photovoltaic power systems Kraiem H.; Aymen F.; Yahya L.; Triviño A.; Alharthi M.; Ghoneim S.S.M.,A comparison between particle swarm and grey wolf optimization algorithms for improving the battery autonomy in a photovoltaic system,2021,Applied Sciences (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113461917&doi=10.3390%2fapp11167732&partnerID=40&md5=3904e54f97129ed153368f58e173cdad,Battery storage energy; Control system; Electric vehicle; GWO; Optimization algorithm; PSO; Renewable energy Cortés B.; Tapia R.; Flores J.J.,System-independent irradiance sensorless ANN-based MPPT for photovoltaic systems in electric vehicles,2021,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85112281844&doi=10.3390%2fen14164820&partnerID=40&md5=d6aaeca38ba5eedf4a57057da2f33038,Artificial neural networks; Bayesian regularization; Electric vehicles; Maximum power point tracking; Photovoltaic Palomino-Resendiz S.I.; Lozada-Castillo N.B.; Flores-Hernández D.A.; Gutiérrez-Frías O.O.; Luviano-Juárez A.,Adaptive active disturbance rejection control of solar tracking systems with partially known model,2021,Mathematics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119117445&doi=10.3390%2fmath9222871&partnerID=40&md5=cc017375964bfeb7f8b3cbcab1663f29,Active disturbance rejection; Adaptive control; Solar tracking systems; Trajectory tracking control Salkuti S.R.; Pagidipala S.; Kim S.-C.,Comprehensive analysis of current research trends in energy storage technologies,2021,Indonesian Journal of Electrical Engineering and Computer Science,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119934679&doi=10.11591%2fijeecs.v24.i3.pp1288-1296&partnerID=40&md5=a670a2e38b71a6fe364859da41dde108,Chemical energy storage; Energy storage; Frequency regulation; Green energy; Kinetic energy; Non-chemical energy storage Guichi A.; Mekhilef S.; Berkouk E.M.; Talha A.,Optimal control of grid-connected microgrid PV-based source under partially shaded conditions,2021,Energy,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106212743&doi=10.1016%2fj.energy.2021.120649&partnerID=40&md5=c3e04a572d89430ab1bfac2a7e9b2fd1,Distributed generation unit; Grid-connected PV system; Intermediate power point tracking (IPPT); Maximum power point tracking (MPPT); Microgrid; Partial shading; PSO Hekss Z.; Abouloifa A.; Lachkar I.; El Aroudi A.; Echalih S.; Al-Numay M.; Giri F.,Advanced nonlinear controller of single-phase shunt active power filter interfacing solar photovoltaic source and electrical power grid,2021,International Transactions on Electrical Energy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121401028&doi=10.1002%2f2050-7038.13237&partnerID=40&md5=3309cb061d053cd482af9131036c40e0, Barhoumi E.M.; Farhani S.; Bacha F.,High efficiency power electronic converter for fuel cell system application,2021,Ain Shams Engineering Journal,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101142138&doi=10.1016%2fj.asej.2021.01.010&partnerID=40&md5=31ba795a552af5b592fa6615c75fb69e,Buck boost converter; Fuel cell; Interleaved boost converter; Maximum power; Voltage regulation Amraee M.; Habibi M.,Application of a sigma-delta modulator for adiabatic charging of an output stage capacitor,2022,International Journal of Electronics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85118114543&doi=10.1080%2f00207217.2021.1992676&partnerID=40&md5=17a71e3f0338a372441a517aca3a4f6f,buck converter; Capacitor charger circuit; CCM mode; CMOS design; low power; sigma-delta Wang C.-C.; Jose O.L.J.A.; Su P.-K.; Tolentino L.K.S.; Sangalang R.G.B.; Velasco J.S.; Lee T.-J.,An adaptive constant current and voltage mode P&O-based Maximum Power Point Tracking controller IC using 0.5-μm HV CMOS,2021,Microelectronics Journal,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119174146&doi=10.1016%2fj.mejo.2021.105295&partnerID=40&md5=b3f98c01f34718994ab142ae32a1ddf9,Energy harvesting; HV CMOS; Maximum Power Point Tracking (MPPT); Perturb and observe (P&O); Photovoltaic (PV) Cheng R.; Xu L.; Yang J.; Liu P.,A NOVEL MAXIMUM POWER POINT TRACKING (MPPT) METHOD BASED ON PHOTOVOLTAIC ARRAY MODEL,2021,International Journal of Electrical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85133266538&doi=10.6329%2fCIEE.202110_28%285%29.0001&partnerID=40&md5=7b53d68efa7765c1c34b81d1eba11fd1,five parameters; INC; MPPT; Photovoltaic Prashant; Siddiqui A.S.; Saxena A.,Optimal intelligent strategic LMP Solution and Effect of DG in Deregulated System for Congestion Management,2021,International Transactions on Electrical Energy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85112321795&doi=10.1002%2f2050-7038.13040&partnerID=40&md5=9d4612ddea826a061f02e4d3ad52cea6,DG; FLC; GAs; LMP Kokert J.; Reindl L.M.; Rupitsch S.J.,Behavioral modeling of dc/dc converters in self-powered sensor systems with modelica,2021,Sensors,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111841468&doi=10.3390%2fs21134599&partnerID=40&md5=cf57a6411288e15c414bf42a377edada,Behavioral modeling; DC/DC converter; Efficiency function; Energy harvesting; Long-term simulation; Power management ICs; Wireless sensor nodes Yasin A.R.; Yasin A.; Riaz M.; Ehab M.; Raza A.,Filter extracted sliding mode approach for DC microgrids,2021,Electronics (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111731214&doi=10.3390%2felectronics10161882&partnerID=40&md5=67a915b37bd838c43b739a58b7dfdf0a,DC microgrid; Droop control; Load sharing; Sliding mode control; Voltage regulation Jiang J.; Zhang T.; Chen D.,"Analysis, Design, and Implementation of a Differential Power Processing DMPPT with Multiple Buck-Boost Choppers for Photovoltaic Module",2021,IEEE Transactions on Power Electronics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102240348&doi=10.1109%2fTPEL.2021.3063230&partnerID=40&md5=9d38e406f834ec4fbeeb2baab69503f0,Differential power processing (DPP); multidimensional perturb and observe; multiple buck-boost choppers; photovoltaic (PV) module; submodule distributed MPPT (DMPPT) Zhu X.; Fu Q.; Yang R.; Zhang Y.,A high power-conversion-efficiency voltage boost converter with MPPT for wireless sensor nodes,2021,Sensors,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85112132517&doi=10.3390%2fs21165447&partnerID=40&md5=2432d2eb0eddda45ef48c5bf95a699ab,Charge pump; MPPT; Photovoltaic cells; Voltage boost converter; WSNs Tang S.; Jiang M.; Abbassi R.; Jerbi H.; latifi M.,A cost-oriented resource scheduling of a solar-powered microgrid by using the hybrid crow and pattern search algorithm,2021,Journal of Cleaner Production,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107707252&doi=10.1016%2fj.jclepro.2021.127853&partnerID=40&md5=3ff6b520599ce7e50a8d01ce1c6b4e73,Hybrid CS-PS algorithm; Microgrid; Optimal management; Photovoltaic; Renewable energy; Stochastic; Uncertainty Chang E.-C.; Cheng C.-A.; Wu R.-C.,Artificial Intelligence of Things-Based Optimal Finite-Time Terminal Attractor and Its Application to Maximum Power Point Tracking of Photovoltaic Arrays in Smart Cities,2022,Wireless Communications and Mobile Computing,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128668297&doi=10.1155%2f2022%2f4213217&partnerID=40&md5=bc0ad187fc1b1379f31c3cabcc471bc8, Jamal I.; Elmorshedy M.F.; Dabour S.M.; Rashad E.M.; Xu W.; Almakhles D.J.,A Comprehensive Review of Grid-Connected PV Systems Based on Impedance Source Inverter,2022,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137611591&doi=10.1109%2fACCESS.2022.3200681&partnerID=40&md5=61fbf8dd1a335dc65c6936fcd955c900,DC-AC power converters; inverters; phase control; pulse width modulation (PWM) converters; voltage-source converters Asgari S.; Menhaj M.B.; Suratgar A.A.; Kazemi M.G.,A disturbance observer based fuzzy feedforward proportional integral load frequency control of microgrids,2021,"International Journal of Engineering, Transactions A: Basics",https://www.scopus.com/inward/record.uri?eid=2-s2.0-85110515303&doi=10.5829%2fIJE.2021.34.07A.13&partnerID=40&md5=908c9831ea1c33f20a4fad6186ad7209,Disturbance Observer; Fuzzy Feedforward PI Controller; Load Frequency Control; Microgrid Boukhriss A.,Active Disturbance Rejection Control Applied to a Three-Phase Grid-Connected Photovoltaic System,2022,Advances in Electrical and Computer Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126786544&doi=10.4316%2fAECE.2022.01010&partnerID=40&md5=8b3500734c283aff0f313c5bee9071da,Fuzzy logic control; Maximum power tracking; Photovoltaic system; Reactive power control; Voltage control Osman A.M.; Alsokhiry F.,Sliding Mode Control for Grid Integration of Wind Power System Based on Direct Drive PMSG,2022,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126321807&doi=10.1109%2fACCESS.2022.3157311&partnerID=40&md5=9cad3109ab467e3de971fbcff18dfd2b,Grid-side converter control; machine-side converter control; permanent magnet synchronous generator; sliding mode control; wind energy Gani A.,Improving dynamic efficiency of photovoltaic generation systems using adaptive type 2 fuzzy-neural network via EN 50530 test procedure,2021,International Journal of Circuit Theory and Applications,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113376791&doi=10.1002%2fcta.3126&partnerID=40&md5=2b48a34238b29f0defcd36f4bc04b423,adaptive type 2 fuzzy-neural network; dynamic efficiency; photovoltaic Yanarates C.; Zhou Z.,Design and Cascade PI Controller-Based Robust Model Reference Adaptive Control of DC-DC Boost Converter,2022,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129190049&doi=10.1109%2fACCESS.2022.3169591&partnerID=40&md5=5612686b8942e2c1bf928dd25ec9ae96,Cascade PI controller; control systems mathematical models; model reference adaptive control; state-space averaging method; time and frequency domain analysis Kumar T.P.; Subrahmanyam N.; Sydulu M.,Optimal control pulses establishment for the power flow management in hybrid renewable energy sources using BCRFA controller,2021,International Transactions on Electrical Energy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85118345982&doi=10.1002%2f2050-7038.13167&partnerID=40&md5=1d339537d733c01472e91ce69784795e, De Carvalho Neto J.A.T.,Qualitative and Quantitative Diagnostic Device for Detecting Defects in Crystalline Silicon PV Cells,2021,IEEE Transactions on Device and Materials Reliability,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119450339&doi=10.1109%2fTDMR.2021.3127348&partnerID=40&md5=09ead85a9ab83d407bcccafc3e2ab99e,I-V characteristic curve; Silicon photovoltaic cells; thermography Abdul-Razzaq I.K.; Fahim Sakr M.M.; Rashid Y.G.,Comparison of PV panels MPPT techniques applied to solar water pumping system,2021,International Journal of Power Electronics and Drive Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113491232&doi=10.11591%2fijpeds.v12.i3.pp1813-1822&partnerID=40&md5=3c2c73c945c5af0f1c03df29e732144a,Fractional open voltage circuit; Fractional short current circuit; Incremental conductance; Maximum power point trackers; Perturb and observe; Solar water pumping system Hasanah R.N.; Ardhenta L.; Nurwati T.; Setyawati O.; Sawitri D.R.; Suyono H.; Taufik T.,Design of PI sliding mode control for Zeta DC–DC converter in PV system,2022,Bulletin of the Polish Academy of Sciences: Technical Sciences,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85133424418&doi=10.24425%2fbpasts.2022.140952&partnerID=40&md5=bd2fb58f7fec103473c430e42bcbf9f0,photovoltaic; PI sliding surface; sliding mode control; Zeta converter Napole C.; Derbeli M.; Barambones O.,Fuzzy logic approach for maximum power point tracking implemented in a real time photovoltaic system,2021,Applied Sciences (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85109131419&doi=10.3390%2fapp11135927&partnerID=40&md5=e28f06edf439587526c6bd89184a2043,Boost converter; FLC; MPPT; Nonlinear control; P&O; PV system; Voltage reference estimator Mohamed A.T.; Mahmoud M.F.; Swief R.A.; Said L.A.; Radwan A.G.,Optimal fractional-order PI with DC-DC converter and PV system,2021,Ain Shams Engineering Journal,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106207574&doi=10.1016%2fj.asej.2021.01.005&partnerID=40&md5=26278b010e9b2cdb8f7e2a618b0a196d,Boost converter; FOPI controller; FPA; Fractional-order circuits; Meta-heuristic algorithms; MPPT; PV modeling; WCA Aminnejhad H.; Kazeminia S.; Aliasghary M.,Robust sliding-mode control for maximum power point tracking of photovoltaic power systems with quantized input signal,2021,Optik,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117065862&doi=10.1016%2fj.ijleo.2021.167983&partnerID=40&md5=789e975073081e31b616833cd5c3a863,Hysteresis quantizer input; Maximum power point tracking; Model uncertainty; Photovoltaic cells; Sliding mode control Saini G.; Baghini M.S.,An energy harvesting system for time-varying energy transducers with FOCV based dynamic and adaptive MPPT for 30 nW to 4 mW of input power range,2021,Microelectronics Journal,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107089009&doi=10.1016%2fj.mejo.2021.105080&partnerID=40&md5=057bf3afb96fd37b8eb2ed79f630d8e1,Boost/buck converter; Constant width pulse generator; Energy harvesting; FOCV based Dynamic and adaptive MPPT; Power management circuit; Power-detector circuit; Synchronous rectification; Time-varying energy transducer; Wireless sensor nodes Ngo Q.-V.; Nguyen T.-T.,The mppt algorithm combined with pitch angle control for the small-scale wind turbine in a wide speed range,2021,International Journal of Power Electronics and Drive Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113571740&doi=10.11591%2fijpeds.v12.i3.pp1482-1493&partnerID=40&md5=f720ec198953b0f8318e60978d6a3722,Fuzzy logic control; MPPT algorithm; PID control; Pitch angle control; Small-scale wind turbine Tao H.; Ghahremani M.; Ahmed F.W.; Jing W.; Nazir M.S.; Ohshima K.,A novel MPPT controller in PV systems with hybrid whale optimization-PS algorithm based ANFIS under different conditions,2021,Control Engineering Practice,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85104330694&doi=10.1016%2fj.conengprac.2021.104809&partnerID=40&md5=a50046b9cc6aa945700c12a62fab2377,Inverter; MPPT; Neural-fuzzy controller; Optimization; PV modules Maaruf M.; Khalid M.,Global sliding-mode control with fractional-order terms for the robust optimal operation of a hybrid renewable microgrid with battery energy storage,2022,Electronics (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121699991&doi=10.3390%2felectronics11010088&partnerID=40&md5=39dc0b04230c82e30c71c99026050ea3,Battery energy storage system; Fractional-order operation; Global sliding-mode control; Solar PV system; Wind power Errouha M.; Motahhir S.; Combe Q.; Derouich A.,Intelligent control of induction motor for photovoltaic water pumping system,2021,SN Applied Sciences,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85112795851&doi=10.1007%2fs42452-021-04757-4&partnerID=40&md5=c686a8d024057c072508f2287c9da950,Adaptive fuzzy logic control; Direct torque control; Fuzzy logic control; Photovoltaic water pumping system; Variable step size incremental conductance Thangaraj A.; Xavier S.A.E.; Ramasamy P.,An EGA Approach-Based Fractional Order PID Controller for Synchronous Buck Converters,2021,"Journal of Circuits, Systems and Computers",https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106755885&doi=10.1142%2fS0218126621502534&partnerID=40&md5=5e7c1bdf16591ba97d6037a49b443ad0,damped response; DC output voltage; faster settling time; fractional order PID controller (FOPID); optimal tuning; Synchronous buck converters Ahmed J.; Salam Z.; Kermadi M.; Afrouzi H.N.; Ashique R.H.,A skipping adaptive P&O MPPT for fast and efficient tracking under partial shading in PV arrays,2021,International Transactions on Electrical Energy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85110750408&doi=10.1002%2f2050-7038.13017&partnerID=40&md5=3bc39801849c558b731d99a10ce3107d,MPPT; P&O; P-V curve; PV; Solar; tracking MPP Valencia-Rivera G.H.; Amaya I.; Cruz-Duarte J.M.; Ortíz-Bayliss J.C.; Avina-Cervantes J.G.,Hybrid controller based on LQR applied to interleaved boost converter and microgrids under power quality events,2021,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117598676&doi=10.3390%2fen14216909&partnerID=40&md5=daffc778e09b3f066e0c4c2ca73d9cbc,Grid-tied mode; Hybrid control; Interleaved boost converter; Metaheuristic; Microgrid; Power quality Ponnuru S.; Ashok Kumar R.; Jothi Swaroopan N.M.,Switching strategies of single stage battery based microgrid; [Strategie przełączania mikrosieci opartej na baterii jednoetapowej],2021,Przeglad Elektrotechniczny,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85114175769&doi=10.15199%2f48.2021.09.26&partnerID=40&md5=394c63534a75d64aac56bedf944c706c,Battery; Maximum power point tracking; Microgrid; Voltage source converter Kumar A.; Rizwan M.; Nangia U.,Development of ANFIS-based algorithm for MPPT controller for standalone photovoltaic system,2021,International Journal of Advanced Intelligence Paradigms,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100816791&doi=10.1504%2fIJAIP.2021.112906&partnerID=40&md5=bf2db3e174c8b25cadea274f39996202,ANFIS; Control algorithms; Maximum power point tracking; MPPT; Photovoltaic systems Sudha T.,Analysis of proportional integral derivative controller parameters for cstr,2021,WSEAS Transactions on Systems and Control,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111560188&doi=10.37394%2f23203.2021.16.34&partnerID=40&md5=13e17deeffddac0e9b94f25e25c1a0f4,Continuous Stirred Tank Reactor (CSTR); Integral Square Error and Nonlinear Ordinary Differential equations; NonLinear Characteristics; Proportional Integral Derivative (PID) Akhil Raj P.; Arya S.R.,Solar supplied two-output DC–DC converters in the application of low power,2021,Automatika,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089976312&doi=10.1080%2f00051144.2020.1805859&partnerID=40&md5=28e886a93601a9ad16b508fafcacf146,Insulation; MPPT; SEPIC-Cuk converter; solar cell; Zeta-Buck Boost converter Racharla S.; Rajan K.; Rajaram Narayanan M.; Senthil Kumar K.R.,Experimental studies on efficiency enhancement of the parabolic solar collector combined with mirrors using the artificial neural network,2021,International Journal of Ambient Energy,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061445041&doi=10.1080%2f01430750.2019.1566176&partnerID=40&md5=5e475fce02c811ee68daeeb46c0f2ff8,Artificial neural network; photovoltaic panel; solar energy; solar tracker Femi R.; Sree Renga Raja T.; Shenbagalakshmi R.,A positive output-super lift Luo converter fed brushless DC motor drive using alternative energy sources,2021,International Transactions on Electrical Energy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097545322&doi=10.1002%2f2050-7038.12740&partnerID=40&md5=cf688e1f1b71da61a69ee083739f5af7,BLDC drive; efficiency; MPPT algorithm; PI controller; PO-SL Luo converter; speed control; VSI Mondal S.; Chattopadhyay M.,Comparative study of three different bridge-less converters for reduction of harmonic distortion in brushless DC motor,2020,Indonesian Journal of Electrical Engineering and Computer Science,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85093646613&doi=10.11591%2fijeecs.v20.i3.pp1185-1193&partnerID=40&md5=75b7143deb61438d7b8f92ff31212c49,BLDCM; Flyback; SEPIC; Total Harmonic Distortion; Zeta Prem Sunder G.; Shanthi B.; Nachiappan A.; Natarajan S.P.,Modified firefly algorithm-based quasi Z-source cascaded multilevel inverter in power system,2021,International Journal of Manufacturing Technology and Management,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127383432&doi=10.1504%2fIJMTM.2021.121579&partnerID=40&md5=1f948ec8b3cbe56c77810bec230c5be5,DC link voltage; firefly algorithm; grid; module; photovoltaic; PSO algorithm; quasi ZS-CMI Bahri H.; Harrag A.,Assessment of Grid Connected PEM Fuel Cell Power System using Matlab/Simulink Stateflow models,2020,Journal of Renewable Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85183837410&doi=10.54966%2fjreen.v23i2.50&partnerID=40&md5=1a7dcec4950466e480a1be8347db3c64,Boost; Fuel Cell; Inverter; MPPT; PEMFC; Variable step size Incremental Conductance Ounnas D.; Guiza D.; Soufi Y.; Maamri M.,Design and hardware implementation of modified incremental conductance algorithm for photovoltaic system,2021,Advances in Electrical and Electronic Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85110524323&doi=10.15598%2faeee.v19i2.3881&partnerID=40&md5=6639cd1464f3de3f592565f0696517c5,Arduino board; MPPT; PV system; Simulink support package for Arduino hardware Aly M.; Ahmed E.M.; Rezk H.; Mohamed E.A.,Marine Predators Algorithm Optimized Reduced Sensor Fuzzy-Logic Based Maximum Power Point Tracking of Fuel Cell-Battery Standalone Applications,2021,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100840019&doi=10.1109%2fACCESS.2021.3058610&partnerID=40&md5=abe7e96e4de58325e589912d8df4b159,Battery; fuel cells (FCs); fuzzy logic control; marine predators algorithm; maximum power point tracking; stand alone applications Wang R.; Li Q.; Miao S.; Miao K.; Deng H.,Design of intelligent controller for ship motion with input saturation based on optimized radial basis function neural network,2021,Recent Patents on Mechanical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85104132232&doi=10.2174%2f2212797613999200730211514&partnerID=40&md5=2d992b769d92c04ec90f44f741e8574d,Genetic algorithm; Input saturation; Intelligent controller; Neural network; Radial basis function; Ship motion Zhou X.; Liu Q.; Ma Y.; Xie B.,DC-Link voltage research of photovoltaic grid-connected inverter using improved active disturbance rejection control,2021,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099564018&doi=10.1109%2fACCESS.2021.3050191&partnerID=40&md5=ba3bb0be47be891185e7638e21cc4a96,DC-link voltage; deviation regulation; linear active disturbance rejection control (LADRC); Photovoltaic (PV) grid-connected inverter; total disturbance Abdelmalek S.; Dali A.; Bakdi A.; Bettayeb M.,Design and experimental implementation of a new robust observer-based nonlinear controller for DC-DC buck converters,2020,Energy,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090910563&doi=10.1016%2fj.energy.2020.118816&partnerID=40&md5=5baee0b16346cac2940757d4c9bc6779,DC-DC converter; dSPACE 1103 platform; Lyapunov theory; Nonlinear observer; PSO Algorithm; Robust nonlinear controller; Voltage tracking Malekzadeh M.; Khosravi A.; Tavan M.,A novel adaptive output feedback control for DC–DC boost converter using immersion and invariance observer,2020,Evolving Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081315872&doi=10.1007%2fs12530-019-09268-7&partnerID=40&md5=da4ba29abf343034f2423966db957f6b,Adaptive control; DC–DC boost converter; Estimator design; Exponential stability; Immersion and invariance Joy J.S.; Uddin N.; Islam M.S.; Islam M.T.,An Innovative Method to Hybrid Renewable Energy Controlling Strategy Using Artificial Techniques,2021,International Journal of Mechanical Engineering and Robotics Research,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103129829&doi=10.18178%2fijmerr.10.3.137-150&partnerID=40&md5=a9881f5fe0acd0b0804ab8e2b653e700,biogas generator; Fuzzy Logic Controller (FLC); Genetic Algorithm (GA); Maximum Power Point Tracker (MPPT); photovoltaic arrays; PID controller; wind turbine Islam H.; Mekhilef S.; Shah N.M.; Soon T.K.; Wahyudie A.; Ahmed M.,Improved proportional-integral coordinated MPPT controller with fast tracking speed for grid-tied PV systems under partially shaded conditions,2021,Sustainability (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099850389&doi=10.3390%2fsu13020830&partnerID=40&md5=cf1501aea1235b0e5259896f62e1da36,Grid-connected; Incremental conductance and PI; MPPT; Partial shading condition; PV; PWM Srinivasarao P.; Peddakapu K.; Mohamed M.R.; Deepika K.K.; Sudhakar K.,Simulation and experimental design of adaptive-based maximum power point tracking methods for photovoltaic systems,2021,Computers and Electrical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096189370&doi=10.1016%2fj.compeleceng.2020.106910&partnerID=40&md5=3427b930bb68dc4419e6412892889471,Adaptive FPIDN; Boost converter; Irradiation; MPPT; PV system; Temperature Ali M.N.; Mahmoud K.; Lehtonen M.; Darwish M.M.F.,An Efficient Fuzzy-Logic Based Variable-Step Incremental Conductance MPPT Method for Grid-Connected PV Systems,2021,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100854016&doi=10.1109%2fACCESS.2021.3058052&partnerID=40&md5=0bec9da578d2f83568e9b5d963cdf431,dynamic responses; fuzzy logic; incremental conductance; Maximum power point tracking; PV system Bouchakour A.; Borni A.; Brahami M.,Comparative study of P&O-PI and fuzzy-PI MPPT controllers and their optimisation using GA and PSO for photovoltaic water pumping systems,2021,International Journal of Ambient Energy,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065756031&doi=10.1080%2f01430750.2019.1614988&partnerID=40&md5=36d746e956f5f549ebdce97b89d43f11,fuzzy logic controller; genetic algorithm; Photovoltaic generator; PI regulator; PSO Li Y.; Samad S.; Ahmed F.W.; Abdulkareem S.S.; Hao S.; Rezvani A.,Analysis and enhancement of PV efficiency with hybrid MSFLA–FLC MPPT method under different environmental conditions,2020,Journal of Cleaner Production,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087339150&doi=10.1016%2fj.jclepro.2020.122195&partnerID=40&md5=cf5df2f4011f7984226bce7494bce0ef,BES; Fuzzy logic system; Modified shuffled frog leaping algorithm; MPPT; Photovoltaic Rao C.; Hajjiah A.; El-Meligy M.A.; Sharaf M.; Soliman A.T.; Mohamed M.A.,A Novel High-Gain Soft-Switching DC-DC Converter with Improved PO MPPT for Photovoltaic Applications,2021,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85104254046&doi=10.1109%2fACCESS.2021.3072972&partnerID=40&md5=d4c1dbc1e24af9ebc72b28236cfccdf9,dc-dc converter; high efficiency; MPPT; Perturb and observe algorithm; photovoltaic; zero current switching Rivera P.; Sotomayor N.,Flyback Microinverter with Nonlinear Control for Low Power Photovoltaic Applications; [Microinversor Tipo Flyback con Control Nolineal para Aplicaciones Fotovoltaicas de Baja Potencia],2020,Revista Politecnica,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85146416097&doi=10.33333%2frp.vol46n1.06&partnerID=40&md5=0d76d82a157fae9873034e493492fda8,Flyback; Inverter; Nonlinear Control; Photovoltaic Cell Khan R.; Khan L.; Ullah S.; Sami I.; Ro J.-S.,Backstepping based super-twisting sliding mode mppt control with differential flatness oriented observer design for photovoltaic system,2020,Electronics (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091676597&doi=10.3390%2felectronics9091543&partnerID=40&md5=86749d84c7ff28e9f9be87061ba8abb2,Backstepping; Buck-boost; DC–DC converter; Differential flatness approach (DFA); Maximum power point tracking (MPPT); Photovoltaic (PV); Sliding mode control (SMC); Super-twisting algorithm (STA) Guo S.; Abbassi R.; Jerbi H.; Rezvani A.; Suzuki K.,Efficient maximum power point tracking for a photovoltaic using hybrid shuffled frog-leaping and pattern search algorithm under changing environmental conditions,2021,Journal of Cleaner Production,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103116165&doi=10.1016%2fj.jclepro.2021.126573&partnerID=40&md5=4266a80b687d1c86641dd570c1dc7713,Adaptive neuro-fuzzy inference system; Battery; HSFLA-PS; Incremental conductance; MPPT; Photovoltaic Alkhatib H.; Lemarchand P.; Norton B.; O'Sullivan D.T.J.,"Deployment and control of adaptive building facades for energy generation, thermal insulation, ventilation and daylighting: A review",2021,Applied Thermal Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096851236&doi=10.1016%2fj.applthermaleng.2020.116331&partnerID=40&md5=ac6ea41fb9b163395b72f200c5892549,Adaptive buildings; Adaptive facades; Adaptive façade control; Energy-harnessing; nZEB Derbeli M.; Barambones O.; Silaa M.Y.; Napole C.,Real-time implementation of a new MPPT control method for a DC-DC boost converter used in a PEM fuel cell power system,2020,Actuators,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85095613387&doi=10.3390%2fact9040105&partnerID=40&md5=f6540ecb1895de7621a724b3052d40b2,DC-DC boost converter; HO-PCL; MPPT; PEM fuel cells; RCE Fam J.Y.; Wong S.Y.; Basri H.B.M.; Abdullah M.O.; Lias K.B.; Mekhilef S.,Predictive Maximum Power Point Tracking for Proton Exchange Membrane Fuel Cell System,2021,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85120080691&doi=10.1109%2fACCESS.2021.3129849&partnerID=40&md5=709921c9bac45e7ed87dc370af746a49,DC-DC boost converter; FC; MATLAB; MPPT; PEMFC Pathak D.; Bhati S.; Gaur P.,Fractional-order nonlinear PID controller based maximum power extraction method for a direct-driven wind energy system,2020,International Transactions on Electrical Energy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091351271&doi=10.1002%2f2050-7038.12641&partnerID=40&md5=030aca00895f298fc485185360a932f9,fractional-order nonlinear PID; grid-tied wind energy system; MPPT; nonlinear control; PMSG; teaching-learning based optimization Bhat S.,Machine learning-based novel DSP controller for PV systems,2021,International Journal of Automation and Control,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102076939&doi=10.1504%2fijaac.2021.113343&partnerID=40&md5=6d19beff0bc8859e0aac309f6f99fda7,Control algorithm; Converter; Tuning Rezk H.; Fathy A.,Stochastic fractal search optimization algorithm based global MPPT for triple-junction photovoltaic solar system,2020,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092427425&doi=10.3390%2fen13184971&partnerID=40&md5=22a35b3c31abcbd6311d780315afbb74,Energy efficiency; Modelling; Optimization; Renewable energy; Shading condition; Triple junction solar cell Kampitsis G.; Batzelis E.; van Erp R.; Matioli E.,Parallel pv configuration with magnetic-free switched capacitor module-level converters for partial shading conditions,2021,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106233982&doi=10.3390%2fen14020456&partnerID=40&md5=ead2ea26fcb3e6094fb9a4dd61d80307,Gallium nitride; Magnetic-free converters; Module-level converters; Parallel architecture; Partial shading; Photovoltaic systems; Switched capacitor converters Kamal T.; Karabacak M.; Perić V.S.; Hassan S.Z.; Fernández‐Ramírez L.M.,Novel improved adaptive neuro‐fuzzy control of inverter and supervisory energy management system of a microgrid,2020,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092305570&doi=10.3390%2fen13184721&partnerID=40&md5=b21e39c34b8952cfaa67ec5faf277340,Adaptive control; Battery; Energy management; Inverter; Photovoltaic; Supervisory control; Ultra‐capacitor; Wavelets Li J.; Dong Y.; Park J.H.; Lin L.; Tang T.; Yoo J.,Body-Area Powering with Human Body-Coupled Power Transmission and Energy Harvesting ICs,2020,IEEE Transactions on Biomedical Circuits and Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096858988&doi=10.1109%2fTBCAS.2020.3039191&partnerID=40&md5=e256be7f58357a1be4af2b47cc4a46e3,Body area network; body-coupled energy harvesting; body-coupled power transmission; energy harvesting; impedance matching; maximum power point tracking; power transfer; rectifier Zafran M.; Khan L.; Khan Q.; Ullah S.; Sami I.; Ro J.-S.,Finite-time fast dynamic terminal sliding mode maximum power point tracking control paradigm for permanent magnet synchronous generator-based wind energy conversion system,2020,Applied Sciences (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091881704&doi=10.3390%2fAPP10186361&partnerID=40&md5=f805030918b7151cafd9c7542db30b9e,Maximum power point tracking (MPPT); Permanent magnet synchronous generator (PMSG); Sliding mode control (SMC); Terminal sliding mode control (TSMC); Wind energy conversion system (WECS) Mansoor M.; Mirza A.F.; Ling Q.,Harris hawk optimization-based MPPT control for PV systems under partial shading conditions,2020,Journal of Cleaner Production,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088525740&doi=10.1016%2fj.jclepro.2020.122857&partnerID=40&md5=a43779ea40f849abb1ccfe49213e32fd,Global maxima; Harris hawk optimization; Local maxima; Maximum power point tracking; Partial shading; Photovoltaic Gudey S.K.; Andavarapu S.,Grid interconnection of solar and battery system using an asymmetrical t-type multilevel inverter to improve conversion efficiency with reduced thd,2021,Iranian Journal of Electrical and Electronic Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102304057&doi=10.22068%2fIJEEE.17.3.1857&partnerID=40&md5=84acbd65825d0d9322df5edbf24a314a,Asymmetrical Multilevel; Battery; Efficiency; Solar; THD Dursun E.H.; Kulaksiz A.A.,Second-order sliding mode voltage-regulator for improving MPPT efficiency of PMSG-based WECS,2020,International Journal of Electrical Power and Energy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084816448&doi=10.1016%2fj.ijepes.2020.106149&partnerID=40&md5=3da74ea2609888ab0fe6fd638829c096,Maximum power point tracking; Permanent magnet synchronous generator; Second-order sliding mode control; Voltage regulator; Wind energy conversion system Njima C.B.; Benamor A.; Messaoud H.,A new robust adaptive sliding mode control for discrete-time systems with time-varying state delay: Application to diesel engine control,2021,"International Journal of Service Science, Management, Engineering, and Technology",https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099981687&doi=10.4018%2fIJSSMET.2021030108&partnerID=40&md5=aa10e16a85582acf7ee2643b98a8bf4a,Diesel Motor; Discrete-Time System; LMI; Robust Adaptive Control; Sliding Mode Control; Unknown Delay Mishu M.K.; Rokonuzzaman M.; Pasupuleti J.; Shakeri M.; Rahman K.S.; Binzaid S.; Tiong S.K.; Amin N.,An adaptive te-pv hybrid energy harvesting system for self-powered iot sensor applications,2021,Sensors,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103840592&doi=10.3390%2fs21082604&partnerID=40&md5=da90d4657ce6a43094fa25495fe0a4c1,Energy harvesting (EH); Hybrid energy harvesting (HEH); Internet of things (IoT); Low power electronic devices; Solar photovoltaic; Thermoelectric; Wireless sensor networks (WSNs) Premkumar K.; Vishnupriya M.; Thamizhselvan T.; Sanjeevikumar P.; Manikandan B.V.,PSO optimized PI controlled DC-DC buck converter-based proton-exchange membrane fuel cell emulator for testing of MPPT algorithm and battery charger controller,2021,International Transactions on Electrical Energy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097674276&doi=10.1002%2f2050-7038.12754&partnerID=40&md5=fdc612d1d3c1ae63ca60b2e2ee2d0e2e,battery charging control; fuel cell emulator; MPPT; PEM fuel cell; PI control; PSO Ngo V.-Q.-B.; Latifi M.; Abbassi R.; Jerbi H.; Ohshima K.; khaksar M.,Improved krill herd algorithm based sliding mode MPPT controller for variable step size P&O method in PV system under simultaneous change of irradiance and temperature,2021,Journal of the Franklin Institute,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103960607&doi=10.1016%2fj.jfranklin.2021.02.021&partnerID=40&md5=d6ec5121bba85ad2dda24bf95faee5ef, Abderrahim Z.; Eddine H.K.; Sabir M.,A new improved variable step size MPPT method for photovoltaic systems using grey wolf and whale optimization technique based PID controller,2021,Journal Europeen des Systemes Automatises,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103249049&doi=10.18280%2fjesa.540120&partnerID=40&md5=adcfec8335f32bbc27f7fab9818f9c64,"Fixed; Observation (P&O), maximum power point tracking MPPT algorithm, optimization methods, grey wolf optimization (GWO), whale optimization algorithm (WOA), overshoot, ripple; Variable step size algorithms, perturbation" Zhou X.; Liu Q.; Ma Y.; Li W.; Xie B.,A modified ladrc-based dc-link voltage controller for photovoltaic grid-connected inverters,2021,Electronics (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103677143&doi=10.3390%2felectronics10080877&partnerID=40&md5=3e8ee9a9fab415279794b4402e26d52b,Cascaded extended state observer; Dc-link voltage; Disturbance reconstruction; Linear active disturbance rejection control (LADRC); Photovoltaic (PV) grid-connected system Zafar M.H.; Al-Shahrani T.; Khan N.M.; Mirza A.F.; Mansoor M.; Qadir M.U.; Khan M.I.; Naqvi R.A.,Group teaching optimization algorithm based mppt control of pv systems under partial shading and complex partial shading,2020,Electronics (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096571099&doi=10.3390%2felectronics9111962&partnerID=40&md5=ace9a3a1b7f94439306df92ecf924944,Complex partial shading (CPS); Global maxima (GM); Group teaching optimization algorithm (GTOA); Maximum power point tracking (MPP) Mahdi A.J.; Fahad S.; Tang W.,An adaptive current limiting controller for a wireless power transmission system energized by a PV generator,2020,Electronics (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092455446&doi=10.3390%2felectronics9101648&partnerID=40&md5=8a2bba71856d87135429a669748a0c5b,Adaptive controller; Boost converter; Induction coupling; Maximum power point tracking; Photovoltaic generator; Resonance circuit; Virtual impedance control; Wireless power transmission system Moon E.; Barrow M.; Lim J.; Blaauw D.; Phillips J.D.,Dual-Junction GaAs Photovoltaics for Low Irradiance Wireless Power Transfer in Submillimeter-Scale Sensor Nodes,2020,IEEE Journal of Photovoltaics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094863948&doi=10.1109%2fJPHOTOV.2020.3025450&partnerID=40&md5=532a6249434850d724d0ee947a061eaa,Bio-implants; Internet of Things (IoT); photovoltaic (PV) cells; wireless power transmission Oubbati B.K.; Boutoubat M.; Rabhi A.; Belkheiri M.,Experiential Integral Backstepping Sliding Mode Controller to achieve the Maximum Power Point of a PV system,2020,Control Engineering Practice,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088633688&doi=10.1016%2fj.conengprac.2020.104570&partnerID=40&md5=b37d410f19d541ba99c4d00eaed9b296,Integral Backstepping Sliding Mode Control (IBSMC); Lyapunov criteria; MPPT; PV; Sliding Mode Control (SMC) Pan Z.; Quynh N.V.; Ali Z.M.; Dadfar S.; Kashiwagi T.,Enhancement of maximum power point tracking technique based on PV-Battery system using hybrid BAT algorithm and fuzzy controller,2020,Journal of Cleaner Production,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090247267&doi=10.1016%2fj.jclepro.2020.123719&partnerID=40&md5=660a4a46fae3ca03fd572818732b7374,BAT optimization Algorithm; Battery; Fuzzy logic system; Hybrid energy system; MPPT; Photovoltaic Oh T.; Parvin D.; Hassan O.; Shamsir S.; Islam S.K.,MPPT integrated DC–DC boost converter for RF energy harvester,2020,"IET Circuits, Devices and Systems",https://www.scopus.com/inward/record.uri?eid=2-s2.0-85095774324&doi=10.1049%2fiet-cds.2019.0509&partnerID=40&md5=ec6132ac79289683e56d4db8eebc419e, Chandrasekaran K.; Kandasamy P.; Ramanathan S.,Deep learning and reinforcement learning approach on microgrid,2020,International Transactions on Electrical Energy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088553346&doi=10.1002%2f2050-7038.12531&partnerID=40&md5=86d62a36607fe8e88a9cb202c75152f3,deep learning; deep reinforcement learning; microgrid; reinforcement learning Mosaad M.I.; Ramadan H.S.M.; Aljohani M.; El-Naggar M.F.; Ghoneim S.S.M.,Near-Optimal PI Controllers of STATCOM for Efficient Hybrid Renewable Power System,2021,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101471615&doi=10.1109%2fACCESS.2021.3058081&partnerID=40&md5=a7a6271603c32856501304f681327625,hybrid power systems; PI controller; PV; reactive power regulation; Renewable energy; STATCOM; Whale optimization algorithm; wind energy Anwer A.M.O.; Omar F.A.; Kulaksiz A.A.,Design of a Fuzzy Logic-based MPPT Controller for a PV System Employing Sensorless Control of MRAS-based PMSM,2020,"International Journal of Control, Automation and Systems",https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085571595&doi=10.1007%2fs12555-019-0512-8&partnerID=40&md5=18329837b8b2e115dbe34bf6f1e564f2,Fuzzy logic controller; maximum power point tracking; model reference adaptive system; permanent magnet synchronous motor Al Gizi A.J.H.,PLC fuzzy PID controller of MPPT of solar energy converter,2021,WSEAS Transactions on Systems and Control,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099831233&doi=10.37394%2f23203.2021.16.1&partnerID=40&md5=96504bb13db4473d609da0056a01d58f,GA; HSF; HSFL-PIDC; MPPT; PIDC; PLC; RBF-NN; SFL Chandrasekaran K.; Arthanari R.,Fuzzy controlled thd reduction and performance improvement of a pmbldc motor using mmli,2021,Tehnicki Vjesnik,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85104999438&doi=10.17559%2fTV-20200529182437&partnerID=40&md5=37c20d14998d5692866c154efba9b80b,Active Power Filter; Boost converter; Fuzzy logic controller; Maximum Power Point Tracking; Multilevel Inverter; Permanent Magnet Brushless DC Drive; Photovoltaic array; Self-Tuning Filter Zeng L.; Li G.; Li M.; Feng Z.; Yang L.; Luo X.,Design and experimental performance of an off-grid ice storage system driven by distributed wind energy,2020,Energy and Buildings,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087680895&doi=10.1016%2fj.enbuild.2020.110252&partnerID=40&md5=771c61d33630665fa77c6fbee65a6aac,Battery; Experimental performance; Ice storage; MPPT; Variable speed compressor; Wind energy Ali K.; Khan L.; Khan Q.; Ullah S.; Ali N.,Neurofuzzy robust backstepping based MPPT control for photovoltaic system,2021,Turkish Journal of Electrical Engineering and Computer Sciences,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100899936&doi=10.3906%2fELK-1907-15&partnerID=40&md5=fb68501b3e71d141bdca9dbdefbc0e9d,Buck-boost converter; Maximum power point tracking (MPPT); Neurofuzzy estimator; Photovoltaic (PV); Robust backstepping (RB) Zhang H.; Martynov K.; Perreault D.J.,A CMOS-Based Energy Harvesting Approach for Laterally Arrayed Multibandgap Concentrated Photovoltaic Systems,2020,IEEE Transactions on Power Electronics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084814125&doi=10.1109%2fTPEL.2020.2970053&partnerID=40&md5=c08e240c9d9e33fa6c61519861a519e5,CMOS dc-dc power converters; Concentrated photovoltaic (CPV) systems; Energy harvesting; Maximum power point tracking (MPPT); Multi-input single-output (MISO) dc-dc converter Yang B.; Wang J.; Wang J.; Shu H.; Li D.; Zeng C.; Chen Y.; Zhang X.; Yu T.,Robust fractional-order PID control of supercapacitor energy storage systems for distribution network applications: A perturbation compensation based approach,2021,Journal of Cleaner Production,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090207944&doi=10.1016%2fj.jclepro.2020.123362&partnerID=40&md5=779ac6a5cb06a2daaa36cf53a79f5792,Distribution network; HIL test; Perturbation compensation; Robust fractional-order PID control; Supercapacitor energy storage systems Islam M.M.; Siffat S.A.; Ahmad I.; Liaquat M.,Robust integral backstepping and terminal synergetic control of course keeping for ships,2021,Ocean Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098750778&doi=10.1016%2fj.oceaneng.2020.108532&partnerID=40&md5=967c5b7bc3e6cc6c3486ce791f83232c,Course keeping control; Lyapunov stability; Robust integral backstepping (IBS-SMC) controller; Synergetic controller (SC); Terminal synergetic controller (TSC) Gupta S.; Deep K.; Heidari A.A.; Moayedi H.; Chen H.,Harmonized salp chain-built optimization,2021,Engineering with Computers,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074592915&doi=10.1007%2fs00366-019-00871-5&partnerID=40&md5=f7077031dcebda0636ae8ce39a967c5e,Exploration and exploitation; Global optimization; Nature-inspired algorithms; Salp Swarm Algorithm Deželak K.; Bracinik P.; Sredenšek K.; Seme S.,Proportional-integral controllers performance of a grid-connected solar pv system with particle swarm optimization and ziegler–nichols tuning method,2021,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106433858&doi=10.3390%2fen14092516&partnerID=40&md5=cd00a4cb16d26c16872f96d72aa22aad,Distribution system; Optimization; Photovoltaic power plant; PI controllers Soetedjo A.; Sulistiawati I.B.,Implementing discrete model of photovoltaic system on the embedded platform for real-time simulation,2020,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090890552&doi=10.3390%2fen13174447&partnerID=40&md5=a64db8ab5ce6e33c656cc5e598844900,Buck converter; Discrete model; Embedded system; MPPT; Photovoltaic; Solar tracker Sibtain D.; Murtaza A.F.; Ahmed N.; Sher H.A.; Gulzar M.M.,Multi control adaptive fractional order PID control approach for PV/wind connected grid system,2021,International Transactions on Electrical Energy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100516205&doi=10.1002%2f2050-7038.12809&partnerID=40&md5=5d55f22bbfde0e0b79564a99c3c9957c,adaptive fractional order PID control; maximum power point; multi control approach Rizzo S.A.; Scelba G.,A hybrid global MPPT searching method for fast variable shading conditions,2021,Journal of Cleaner Production,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103378870&doi=10.1016%2fj.jclepro.2021.126775&partnerID=40&md5=76361976650cf150549eeecd677a61d4,Artificial neural networks; Electric vehicles; Maximum power point tracking; Photovoltaic system; Shading; Solar energy Bouarroudj N.; Abdelkrim T.; Farhat M.; Batlle V.F.; Benlahbib B.; Boukhetala D.; Boudjema F.,Fuzzy Logic Controller Based Maximum Power Point Tracking and its Optimal Tuning in Photovoltaic Systems,2021,Serbian Journal of Electrical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121829366&doi=10.2298%2fSJEE2103351B&partnerID=40&md5=2a513b03ccf814da3ea997b904bd8b41,Boost converter; Flc; Flc mppt; Flc mppt pso; Mppt; Pso; Pv system Tiwary A.,Advanced and Innovative Optimization Techniques in Controllers: AComprehensive Review,2021,International Journal on Recent and Innovation Trends in Computing and Communication,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139236309&doi=10.17762%2fijritcc.v9i3.5469&partnerID=40&md5=2c823592ed14c4d3295252a8a69d90ed,AC–DC converters; Ant Colony Optimization; optimization techniques; power electronic controllers Łebkowski A.; Wnorowski J.,A comparative analysis of energy consumption by conventional and anchor based dynamic positioning of ship,2021,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106207713&doi=10.3390%2fen14030524&partnerID=40&md5=ae8190027d63989af26a152572a98e32,Anchor positioning systems; Dynamic positioning system; Energy efficiency; Ship electric propulsion energy consumption Karafil A.,Comparison of the various irregular pulse density modulation (PDM) control pattern lengths for resonant converter with photovoltaic (PV) integration; [Fotovoltaik (PV) entegrasyonlu rezonans dönüştürücü için çeşitli düzensiz darbe yoğunluk modülasyonu (PDM) kontrol dağılımı uzunluklarının karşılaştırılması],2021,Journal of the Faculty of Engineering and Architecture of Gazi University,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107675985&doi=10.17341%2fgazimmfd.685751&partnerID=40&md5=85339064de9b7eab92fc24dfa3dee00f,Maximum power point tracker; PDM control; PLL control; Resonant converter Tayyab H.M.; Javed Y.; Ullah I.; Dogar A.A.; Ahmed B.,A Hybrid MPPT Technique for Solar Photovoltaic System under Partial Shading †,2021,Engineering Proceedings,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85145398026&doi=10.3390%2fengproc2021012028&partnerID=40&md5=b8d9429ea4a3eda55c310ba6cd5f6567,FOCV; hybrid model; improve IC Kessler Slongo L.; Vega Martínez S.; Vale Barbosa Eiterer B.; Augusto Bezerra E.,"Nanosatellite electrical power system architectures: Models, simulations, and tests",2020,International Journal of Circuit Theory and Applications,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091351509&doi=10.1002%2fcta.2872&partnerID=40&md5=8219ac259fbb9b82b4b4e8657b857487,electrical power system; energy efficiency; maximum power point tracking; nanosatellite Abo-Khalil A.G.; Alharbi W.; Al-Qawasmi A.-R.; Alobaid M.; Alarifi I.M.,Maximum power point tracking of PV systems under partial shading conditions based on opposition-based learning firefly algorithm,2021,Sustainability (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102528179&doi=10.3390%2fsu13052656&partnerID=40&md5=b90df4f50581ba28cfa548a1853a7d75,Bio-inspired algorithms; Firefly algorithm; Maximum power point tracking Manisha; Gaur P.,The Survey of MPPT under non-uniform atmospheric conditions for the Photovoltaic Generation Systems,2021,International Journal of Information Technology (Singapore),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098976670&doi=10.1007%2fs41870-020-00591-w&partnerID=40&md5=9b5b02e66ada37ceaf973fb16d5f0bd3,BOS; MPPT; Renewable energy; Solar PV cells Taghdisi M.; Balochian S.,Maximum Power Point Tracking of Variable-Speed Wind Turbines Using Self-Tuning Fuzzy PID,2020,Technology and Economics of Smart Grids and Sustainable Energy,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088794349&doi=10.1007%2fs40866-020-00087-3&partnerID=40&md5=74f31748fec16a3efa3080ca1ceed8c7,Hill climbing search; Maximum power point tracking; Self-tuning fuzzy PID; Wind turbine Kumar N.; Nema S.; Nema R.K.; Verma D.,"A state-of-the-art review on conventional, soft computing, and hybrid techniques for shading mitigation in photovoltaic applications",2020,International Transactions on Electrical Energy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083380712&doi=10.1002%2f2050-7038.12420&partnerID=40&md5=60086d4e3103d3184e6ea0e059874092,artificial intelligence; global maximum power point; hybrid optimization techniques; partial shading condition; photovoltaic generation System; pulse width modulation Ali Z.M.; Vu Quynh N.; Dadfar S.; Nakamura H.,Variable step size perturb and observe MPPT controller by applying θ-modified krill herd algorithm-sliding mode controller under partially shaded conditions,2020,Journal of Cleaner Production,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087586910&doi=10.1016%2fj.jclepro.2020.122243&partnerID=40&md5=01b88fa14448ad320a36c5ffb4bf4732,MPPT; Partial shading condition; Photovoltaic; Renewable energy; Sliding mode controller; Variable step size Chandrarathna S.C.; Lee J.-W.,A 580 nW Dual-Input Energy Harvester IC Using Multi-Task MPPT and a Current Boost Converter for Heterogeneous Source Combining,2020,IEEE Transactions on Circuits and Systems I: Regular Papers,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097330232&doi=10.1109%2fTCSI.2020.3015989&partnerID=40&md5=15cd5e18b7cc50b36999545cedc34080,boost converter; Boost converter; electromagnetic vibration energy generator; energy harvesting; maximum power tracking; thermoelectric generator Hendawi E.,A high performance grid connected PV system based on HERIC transformerless inverter,2020,Indonesian Journal of Electrical Engineering and Computer Science,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091121816&doi=10.11591%2fijeecs.v20.i2.pp602-612&partnerID=40&md5=6ff928167e4de6dd45f5b3ae5fecc1c7,Boost converter; HERIC transformerless inverter; Leakage current; MPPT; PV system Awais M.; Khan L.; Ahmad S.; Jamil M.,Feedback-linearization-based fuel-cell adaptive-control paradigm in a microgrid using a wavelet-entrenched neurofuzzy framework,2021,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106516028&doi=10.3390%2fen14071850&partnerID=40&md5=33a9e1c12d20836b2fdb61eb80c93917,Feedback linearization; Hybrid power system; Laguerre wavelet; Microgrid; Recurrent NeuroFuzzy; SOFC Keshta H.E.; Saied E.M.; Malik O.P.; Bendary F.M.; Ali A.A.,Fuzzy PI controller-based model reference adaptive control for voltage control of two connected microgrids,2021,"IET Generation, Transmission and Distribution",https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100185387&doi=10.1049%2fgtd2.12046&partnerID=40&md5=ad9eaaf7ef2b18a127de29b18c8c895b, Mudaliar M.D.; Sivakumar N.,IoT based real time energy monitoring system using Raspberry Pi,2020,Internet of Things (Netherlands),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094644383&doi=10.1016%2fj.iot.2020.100292&partnerID=40&md5=051af359608b88ebded068222574c4c1,Arduino; Energy monitoring systems; IoT; Raspberry Pi Govindharaj A.; Mariappan A.; Ambikapathy A.; Bhadoria V.S.; Alhelou H.H.,Real-Time Implementation of Adaptive Neuro Backstepping Controller for Maximum Power Point Tracking in Photo Voltaic Systems,2021,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85112652314&doi=10.1109%2fACCESS.2021.3099158&partnerID=40&md5=90f77b7237dfc3b7ddb6684a14c6fe2d,Chebyshev neural network; Chebyshev polynomials; Lyapunov stability; MPPT; Photo voltaic Chankaya M.; Hussain I.; Ahmad A.; Khan I.; Muyeen S.M.,Nyström minimum kernel risk-sensitive loss based seamless control of grid-tied pv-hybrid energy storage system,2021,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106306844&doi=10.3390%2fen14051365&partnerID=40&md5=0c445fa6d8d8367e5a0f0f060b8abcca,Adaptive control; Islanding and re-synchronization; Lead-acid battery; Optimization; Power electronics; Power quality; Proton exchange membrane fuel cell (PEMFC); PV; Seamless con-trol; Ultra-capacitor (UC) hadji Mbaye NDiaye E.; Ndiaye A.; Faye M.,Design and Implementation of a Hybrid Neuro-Fuzzy Corrector for DC Bus Voltage Regulation,2021,EAI Endorsed Transactions on Energy Web,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103322690&doi=10.4108%2feai.8-10-2020.166551&partnerID=40&md5=a0fb5a400dcaa7d6a474531858bfd59a,DC bus voltage regulation; HNF; modified PID; THD; Utility Grid Shaikh M.S.; Hua C.; Jatoi M.A.; Ansari M.M.; Qader A.A.,Application of grey wolf optimisation algorithm in parameter calculation of overhead transmission line system,2021,"IET Science, Measurement and Technology",https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100576535&doi=10.1049%2fsmt2.12023&partnerID=40&md5=4dd52a8559de84d16226c46e6dbfd8ea, Maeng J.; Park I.; Shim M.; Jeong J.; Kim C.,A High-Voltage Dual-Input Buck Converter with Bidirectional Inductor Current for Triboelectric Energy-Harvesting Applications,2021,IEEE Journal of Solid-State Circuits,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100299751&doi=10.1109%2fJSSC.2020.3012991&partnerID=40&md5=5c42956eeb1fc0e5c1ce0063c0d0964c,Buck converter; dc-dc converter; dual input (DI); energy harvesting (EH); high-voltage (HV) sampling; inductor sharing; three-level gate driver (TLGD); triboelectric nanogenerator (TENG) Shalaby R.; Ammar H.H.; Azar A.T.; Mahmoud M.I.,Optimal fractional-order fuzzy-MPPT for solar water pumping system,2021,Journal of Intelligent and Fuzzy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099019087&doi=10.3233%2fJIFS-201538&partnerID=40&md5=4e58d801d7cadab6e5146d781258db1c,Fractional Order Systems; Maximum Power Point Tracking; Optimal control; Optimal Fractional Order Control Ramyar A.; Avestruz A.-T.,Reconfigurable photovoltaic emulator for differential diffusion charge redistribution solar modules,2021,IEEE Open Journal of Industry Applications,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137355067&doi=10.1109%2fOJIA.2021.3063842&partnerID=40&md5=54cb265df4163d0fc22d8c313d80d03b,Diffusion charge redistribution; MPPT; photovoltaic; PV emulator; solar Farhat M.; Barambones O.; Sbita L.,A real-time implementation of novel and stable variable step size MPPT,2020,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090975102&doi=10.3390%2fen13184668&partnerID=40&md5=1beb4ebbc6cacdd6e4d31d4d97a775df,DSPACE; MPPT; P&O; PV; VSZ Kececioglu O.F.; Gani A.; Sekkeli M.,Improved hybrid intelligent controller design for MPPT of stand-alone PV System,2021,Turkish Journal of Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113369077&doi=10.31127%2ftuje.652229&partnerID=40&md5=ada34d05811b5c6190def7f4eda24370,Hybrid intelligent controller; MPPT; Stand-alone PV system Babes B.; Albalawi F.; Hamouda N.; Kahla S.; Ghoneim S.S.M.,Fractional-Fuzzy PID Control Approach of Photovoltaic-Wire Feeder System (PV-WFS): Simulation and HIL-Based Experimental Investigation,2021,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85120047973&doi=10.1109%2fACCESS.2021.3129608&partnerID=40&md5=f5dbbbf032897ad2d16b544dc54563ca,Buck converter; fractional-order fuzzy PID regulator; MPPT technique; PSO algorithm; PV module; wire feeder system (WFS) Kamaraj V.; Chellammal N.; Chokkalingam B.; Munda J.L.,Minimization of cross-regulation in pv and battery connected multi-input multi-output dc to dc converter,2020,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107112921&doi=10.3390%2fen13246534&partnerID=40&md5=4abc40fc6c23e655ccaac4ea6783e5a5,Cross-regulation; Digital model predictive controller (DMPC); MIMO systems; PID controller; Positive Super-Lift Luo converter; Renewable energy Arfaoui J.; Rezk H.; Al-Dhaifallah M.; Ibrahim M.N.; Abdelkader M.,Simulation-based coyote optimization algorithm to determine gains of PI controller for enhancing the performance of solar PV water-pumping system,2020,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090921406&doi=10.3390%2fen13174473&partnerID=40&md5=8fe2d3d8ca41fffd2e3449a5b999c302,Coyote optimization algorithm; Energy efficiency; Simulation-based optimization; Water pumping Nora K.; Nadjat Z.; Yamina T.; Khier B.,Control of pid parameters by iterative learning based on neural network,2021,Przeglad Elektrotechniczny,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85104206305&doi=10.15199%2f48.2021.04.28&partnerID=40&md5=7075b7c87f4b09cec954546b4948eefb,CSTR; Dynamic process; Learning process; PID controller de León Puig N.I.P.; Bozalakov D.; Acho L.; Vandevelde L.; Rodellar J.,An Adaptive–Predictive control scheme with dynamic Hysteresis Modulation applied to a DC–DC buck converter,2020,ISA Transactions,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085042042&doi=10.1016%2fj.isatra.2020.05.015&partnerID=40&md5=e63f40d14e42016b39e6972ad5d17244,Adaptive–predictive control; DC–DC buck converter; Hysteresis modulation Silaa M.Y.; Derbeli M.; Barambones O.; Cheknane A.,Design and Implementation of High Order Sliding Mode Control for PEMFC Power System,2020,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090882731&doi=10.3390%2fen13174317&partnerID=40&md5=13529ef9c83287ddbe7123fc4d58305a,DSPACE DS1104; PEMFC; QC-HOSM; Step-up converter Wijaya B.H.; Subroto R.K.; Lian K.L.; Hariyanto N.,A maximum power point tracking method based on a modified grasshopper algorithm combined with incremental conductance,2020,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090889523&doi=10.3390%2fen13174329&partnerID=40&md5=18ae46a1482d2030e9bf37f97f61ca23,Grasshopper optimization algorithm; Incremental conductance; Maximum power point tracking; PV system De Souza G.A.F.; Santos R.B.D.; De Abreu Faria L.,A PWM Nie-Tan Type-Reducer Circuit for a Low-Power Interval Type-2 Fuzzy Controller,2021,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85120549130&doi=10.1109%2fACCESS.2021.3131877&partnerID=40&md5=9420b6fe19c25f70d42e4cc574731355,Analog integrated circuits; fuzzy hardware; interval type-2 fuzzy logic; low-power Salem A.A.; Aldin N.A.N.; Azmy A.M.; Abdellatif W.S.E.,Implementation and Validation of an Adaptive Fuzzy Logic Controller for MPPT of PMSG-Based Wind Turbines,2021,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121806670&doi=10.1109%2fACCESS.2021.3134947&partnerID=40&md5=8fce34cb62e3f8e21e6d0c0c5242fcf4,adaptive fuzzy logic control (AFLC); DSPACE 1104; PMSG; wind energy Khan M.B.; Saif H.; Lee K.; Lee Y.,Dual piezoelectric energy investing and harvesting interface for high-voltage input,2021,Sensors,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103035593&doi=10.3390%2fs21072357&partnerID=40&md5=fb993519b837ed6a5f37c7927dc6ae38,Energy harvester; Energy investment; Harvesting interface; High-voltage harvesting; Partial electric charge extraction (PECE); Piezoelectric generator; PZT Cheng Z.; Li Z.; Liang J.; Si J.; Dong L.; Gao J.,Distributed coordination control strategy for multiple residential solar PV systems in distribution networks,2020,International Journal of Electrical Power and Energy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074486301&doi=10.1016%2fj.ijepes.2019.105660&partnerID=40&md5=a7e47c743ca706fd052f3416a7359e1c,Distributed coordination control; Distribution networks; Multi-agent system; Reactive power dispatch; Solar PV systems; Voltage variation Wu A.; Mao J.-F.; Zhang X.,An ADRC-Based Hardware-in-the-Loop System for Maximum Power Point Tracking of a Wind Power Generation System,2020,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098549136&doi=10.1109%2fACCESS.2020.3045015&partnerID=40&md5=2b5bf4c6b4490b3f68ad9722aaa5cd24,active disturbance rejection control; hardware-in-the-loop simulation; LabVIEW FPGA; maximum power point tracking; rapid control prototype; Wind power generation Veera Manikandan P.; Selvaperumal S.,EANFIS-based Maximum Power Point Tracking for Standalone PV System,2020,IETE Journal of Research,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088038765&doi=10.1080%2f03772063.2020.1788425&partnerID=40&md5=7cced64742d6a39817bfe56c92050a72,Adaptive neuro fuzzy interface system; Brushless DC motor; Maximum power point tracking; Photovoltaic panel; Power generation; Proportional integral derivative controller; Quasi-Z source inverter Moorthy J.G.; Manual S.; Moorthi S.; Raja P.,Performance analysis of solar PV based DC optimizer distributed system with simplified MPPT method,2020,SN Applied Sciences,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100820097&doi=10.1007%2fs42452-020-2010-2&partnerID=40&md5=d691e188dac8543739a96bb6743b766e,DC optimizer; MPPT; Solar PV grid-connected system Limouchi E.; Taher S.A.; Ganji B.,Power and Frequency Control of Active Generator used for Smart Grid Applications,2020,Majlesi Journal of Electrical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85110010997&partnerID=40&md5=21744b7a513ddcc00bbda057ba10da6c,Active Generators; Micro-grid; Sliding Mode Controller; Space Vector Pulse Width Modulation; Voltage Source Converter Yang B.; Zhu T.; Zhang X.; Wang J.; Shu H.; Li S.; He T.; Yang L.; Yu T.,Design and implementation of Battery/SMES hybrid energy storage systems used in electric vehicles: A nonlinear robust fractional-order control approach,2020,Energy,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075356456&doi=10.1016%2fj.energy.2019.116510&partnerID=40&md5=9a2fa0ad9d6b4973898007f3790fe727,Battery/SMES hybrid energy storage system; Electric vehicles; High-gain perturbation observer; Nonlinear robust fractional-order control; Rule-based strategy Huang R.; Hong F.; Ghaderi D.,Sliding mode controller-based e-bike charging station for photovoltaic applications,2020,International Transactions on Electrical Energy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078906114&doi=10.1002%2f2050-7038.12300&partnerID=40&md5=92c6756d9f8d6eec3a3572136c37ef95,DC-DC step-up converter; E-bike; electrical charging station (ECS); PV panels; sliding mode controller (SMC) Dhanamjayulu C.; Khasim S.R.; Padmanaban S.; Arunkumar G.; Holm-Nielsen J.B.; Blaabjerg F.,Design and implementation of multilevel inverters for fuel cell energy conversion system,2020,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099075247&doi=10.1109%2fACCESS.2020.3029153&partnerID=40&md5=84fcd9c45ea0bcfb21b80a8a38bd073b,Converter; Multilevel inverter (MLI); Proton exchange membrane fuel cell (PEMFC); Total harmonics distortion (THD) Hamlili B.; Benahmed K.; Gasbaoui B.,Behaviour of solar wireless sensor network in saharan region under different scenarios consideration,2020,International Journal of Electrical and Computer Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079406529&doi=10.11591%2fijece.v10i3.pp2797-2806&partnerID=40&md5=99f0d32dc8326e6a74fcef82a297e898,Boost; IC algorithm; MPPT; PV; Sensor networks Sahoo J.; Samanta S.; Bhattacharyya S.,Adaptive PID Controller with P&O MPPT Algorithm for Photovoltaic System,2020,IETE Journal of Research,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052057574&doi=10.1080%2f03772063.2018.1497552&partnerID=40&md5=6d405a73510950273329e60a2af64473,Adaptive controller; DC–DC converter; Maximum power point tracking (MPPT); Perturb and observe (P&O); Photovoltaic (PV); Proportional integral differential controller (PID controller) Charaabi A.; Barambones O.; Zaidi A.; Zanzouri N.,A novel two stage controller for a dc-dc boost converter to harvest maximum energy from the PV power generation,2020,Actuators,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084702809&doi=10.3390%2fACT9020029&partnerID=40&md5=0a708d8d7824e0c9fe35fffd6e739e19,DC-DC boost converter; MPPT; Non linear sliding mode; PV power plant; Two-stage MPPT Valele W.; Virambath R.; Mehta U.; Azid S.,Fractional analog scheme for efficient stabilization of a synchronous buck converter,2020,Journal of Electrical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085762645&doi=10.2478%2fjee-2020-0017&partnerID=40&md5=4dbf1002abf8c3fd7d20ffdb76e1f85f,DC-DC buck converter; FOPI; FPAA; Fractional Controller Chang E.-C.,Applying robust intelligent algorithm and internet of things to global maximum power point tracking of solar photovoltaic systems,2020,Wireless Communications and Mobile Computing,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097772714&doi=10.1155%2f2020%2f8882482&partnerID=40&md5=0434fb90ab99ac30b054721f4a231a33, Kumar R.; Sahu B.; Shiva C.K.; Rajender B.,A control topology for frequency regulation capability in a grid integrated PV system,2020,Archives of Electrical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089468738&doi=10.24425%2faee.2020.133033&partnerID=40&md5=546fe5bc713765b553f79c927a36bdac,Frequency controller; Maximum power point tracking (MPPT); Photovoltaic (PV); Power system; Pseudo maximum power point tracking (PMPPT) Mishra J.; Pattnaik M.; Samanta S.,Drift-Free Perturb and Observe MPPT Algorithm with Improved Performance for SEIG-Based Stand-Alone Wind Energy Generation System,2020,IEEE Transactions on Power Electronics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85080947647&doi=10.1109%2fTPEL.2019.2952324&partnerID=40&md5=02a90c8e77727d07dfdfb12f9e486037,Drift-free phenomena; maximum power point tracking (MPPT); self-excited induction generator; steady-state performance; transient analysis; wind energy conversion system Solanki S.G.; Manzoor S.; Ramasamy M.,Design of energy management system for solar power smoothing,2020,Journal of Advanced Research in Dynamical and Control Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090738168&doi=10.5373%2fJARDCS%2fV12SP5%2f20201734&partnerID=40&md5=6891362ebea5b94b67561e9b7dae4c2f,Grid Connected; Intermittency; Photovoltaic; Smoothing Thangam T.; K M.; Kazem H.A.,Research perspectives and state-of-the-art methods in photovoltaic microgrids,2020,World Journal of Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078032532&doi=10.1108%2fWJE-06-2019-0181&partnerID=40&md5=647192ed8d362789edb645f66ee3d28a,Controllers; MG; Performance; Photovoltaic; Renewable grid source Slamet S.; Rijanto E.; Nugroho A.; Ghani R.A.,A robust maximum power point tracking control for PV panel using adaptive PI controller based on fuzzy logic,2020,Telkomnika (Telecommunication Computing Electronics and Control),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097046185&doi=10.12928%2fTELKOMNIKA.v18i6.17271&partnerID=40&md5=3a9cba9f62ba1780cd9f49bd3917bc3d,Adaptive DC-DC converter Fuzzy logic Maximum power point tracking Photovoltaic Proportional integral Eydi M.; Hosseini Sabzevari S.I.; Ghazi R.,A novel strategy of maximum power point tracking for photovoltaic panels based on fuzzy logic algorithm,2020,Advances in Electrical and Electronic Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083097156&doi=10.15598%2faeee.v18i1.3511&partnerID=40&md5=e22fcce6e52c6b455900d3bf8ed8349d,Fuzzy Logic Algorithm; MPPT; PV Panel; Range of MPPs Variations Mazouz F.; Belkacem S.; Colak I.; Drid S.; Harbouche Y.,Adaptive direct power control for double fed induction generator used in wind turbine,2020,International Journal of Electrical Power and Energy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068517784&doi=10.1016%2fj.ijepes.2019.105395&partnerID=40&md5=e35591a99cefba8c8c4fca5379e7868f,Adaptive direct power control (A-DPC); Direct power control (DPC); Doubly fed induction generator (DFIG); Parameter variations; Vector control (VC); Wind energy conversion system (WECS) Huang P.-C.; Kuo T.-H.,A Reconfigurable and Extendable Single-Inductor Single-Path Three-Switch Converter for Indoor Photovoltaic Energy Harvesting,2020,IEEE Journal of Solid-State Circuits,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088692249&doi=10.1109%2fJSSC.2020.2987722&partnerID=40&md5=9fbad8215fd201984ced96dd2b50a4b7,Dual-path six-switch (2P6S); dual-path three-switch (2P3S); energy efficiency; maximum power point tracking (MPPT); photovoltaic (PV) energy harvesting; reconfigurable controller; single-path three-switch (1P3S) Rameshkumar K.; Indragandhi V.,Overview of reference current extraction techniques in single phase shunt active power filter,2020,International Journal on Emerging Technologies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084989371&partnerID=40&md5=12834d6329647d96ab07bacc0b30d735,DC Link capacitor voltage control; Harmonics; Reference current extraction; Single phase shunt active filter Anwer A.M.O.; Omar F.A.; Bakir H.; Kulaksiz A.A.,Sensorless control of a PMSM drive using EKF for wide speed range supplied by MPPT based solar PV system,2020,Elektronika ir Elektrotechnika,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082525170&doi=10.5755%2fj01.eie.26.1.23560&partnerID=40&md5=4b2b4ad652b59c91de879174e9e3d0b4,Extended Kalman filter; MPPT; PMSM; PV system Metry M.; Balog R.S.,An Adaptive Model Predictive Controller for Current Sensorless MPPT in PV Systems,2020,IEEE Open Journal of Power Electronics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098579632&doi=10.1109%2fOJPEL.2020.3026775&partnerID=40&md5=f98f93551feeafb73d38e06d54f1816c,dc/dc converters; maximum power point tracking; model predictive control; Photovoltaics; sensorless current mode Tang R.; Lin Q.; Zhou J.; Zhang S.; Lai J.; Li X.; Dong Z.,Suppression strategy of short-term and long-term environmental disturbances for maritime photovoltaic system,2020,Applied Energy,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075860107&doi=10.1016%2fj.apenergy.2019.114183&partnerID=40&md5=985e05ab027f3c18d11c86d40cde768d,Environmental disturbance; Green ship; Maritime photovoltaic system; Maximum power point tracking Goksu O.F.; Arabul A.Y.; Vural R.A.,Low voltage battery management system with internal adaptive charger and fuzzy logic controller,2020,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084351120&doi=10.3390%2fen13092221&partnerID=40&md5=30b964d02865a387c97f47d7ac12e3ca,Battery chargers; Battery management systems; Fuzzy logic control Chu G.; Wen H.; Yang Y.; Wang Y.,Elimination of photovoltaic mismatching with improved submodule differential power processing,2020,IEEE Transactions on Industrial Electronics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076640853&doi=10.1109%2fTIE.2019.2908612&partnerID=40&md5=d53a89b3368700c670dcbb67dd6403bc,Differential power processing (DPP); efficiency; minimum-power tracking (MPT); photovoltaic (PV) mismatch; PV-to-bus Seddjar A.; Kerrouche K.D.E.; Wang L.,Simulation of the proposed combined Fuzzy Logic Control for Maximum Power Point Tracking and Battery Charge Regulation used in CubeSat,2020,Archives of Electrical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85095611292&doi=10.24425%2faee.2020.133916&partnerID=40&md5=96bbc7cf407330e17b813888c3c22fe6,Battery Charge Regulation; Combined Fuzzy Logic Control; CubeSat; Electrical Power System; Maximum Power Point Tracking; Perturb and Observe; Photovoltaic system Guerrero-Ramirez E.; Martinez-Barbosa A.; Contreras-Ordaz M.A.; Guerrero-Ramirez G.,FPGA-based active disturbance rejection control and maximum power point tracking for a photovoltaic system,2020,International Transactions on Electrical Energy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082415194&doi=10.1002%2f2050-7038.12398&partnerID=40&md5=9032f6138086cf83f7f0ea72c9850b59,active disturbance rejection control; MPPT; perturb and observe; PV system Rezk H.; Fathy A.,Performance improvement of PEM fuel cell using variable step-size incremental resistance MPPT technique,2020,Sustainability (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088641004&doi=10.3390%2fsu12145601&partnerID=40&md5=ed549e74a3e92bb63c3fc25b27fb3dea,Incremental resistance; MPPT; PEM fuel cell; Renewable energy; Variable step size Vivas F.J.; Segura F.; Andújar J.M.; Palacio A.; Saenz J.L.; Isorna F.; López E.,Multi-objective fuzzy logic-based energy management system for microgrids with battery and hydrogen energy storage system,2020,Electronics (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087352790&doi=10.3390%2felectronics9071074&partnerID=40&md5=f3ba1bcdd6567cb1aecdad0fbbea1bdc,Battery and hydrogen energy storage system; Energy management system; Fuzzy logic controller; Renewable source-based microgrid Alice Hepzibah A.; Premkumar K.,ANFIS current–voltage controlled MPPT algorithm for solar powered brushless DC motor based water pump,2020,Electrical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075575362&doi=10.1007%2fs00202-019-00885-8&partnerID=40&md5=e77a61a288d834037d709fbfe8d2711c,ANFIS; Maximum power point tracking; PI controller; Solar PV array Zeng F.; Shu H.,Memetic salp swarm algorithm-based frequency regulation for power system with renewable energy integration,2020,Mathematical Problems in Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098479553&doi=10.1155%2f2020%2f6661793&partnerID=40&md5=743f3a645c7f19d427f17a630393a008, Jung J.-H.; Hong S.-K.; Kwon O.-K.,A highly reliable SIMO converter using hybrid starter and overcharging protector for energy harvesting systems,2020,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102874501&doi=10.1109%2fACCESS.2020.3021230&partnerID=40&md5=0b42b7e0c9e33f773a932ffb0075c9e2,Cold start; Energy harvesting; Overcharging protection; Power-on-reset; SIMO converter Xue R.; Wu Z.,A Survey of Application and Classification on Teaching-Learning-Based Optimization Algorithm,2020,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078707440&doi=10.1109%2fACCESS.2019.2960388&partnerID=40&md5=b957cb1fd844a507910cb65b7221a1ad,global optimization; optimization; swarm intelligent optimization; TLBO algorithm Ahmed S.; Adil H.M.M.; Ahmad I.; Azeem M.K.; Huma Z.E.; Khan S.A.,Supertwisting sliding mode algorithm based nonlinear MPPT control for a solar PV system with artificial neural networks based reference generation,2020,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089812497&doi=10.3390%2fen13143695&partnerID=40&md5=3020a82d544535125ccb6e3d2fdf0e01,Artificial neural networks (ANN); Lyapunov stability; Sliding mode controller (SMC); Supertwisting sliding mode controller (ST-SMC) Zhang Y.,Coverage Optimization and Simulation of Wireless Sensor Networks Based on Particle Swarm Optimization,2020,International Journal of Wireless Information Networks,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083756655&doi=10.1007%2fs10776-019-00446-7&partnerID=40&md5=ccf94bdadd76149926fd526aae4af0cc,Coverage optimization; Coverage optimization model; External decentralization; Stochastic particle swarm optimization; Wireless sensor networks Abbassi A.; Abbassi R.; Heidari A.A.; Oliva D.; Chen H.; Habib A.; Jemli M.; Wang M.,Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach,2020,Energy,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082590673&doi=10.1016%2fj.energy.2020.117333&partnerID=40&md5=a0d60275f40353c2f8ca6d9cd6689a0f,I–V characteristics; Metaheuristic optimizer; Parameters extraction; Photovoltaic panels; Salp swarm algorithm; Two-diode model Celikel R.; Gundogdu A.,System identification-based MPPT algorithm for PV systems under variable atmosphere conditions using current sensorless approach,2020,International Transactions on Electrical Energy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083847041&doi=10.1002%2f2050-7038.12433&partnerID=40&md5=71f579be58f274b6efe5534c4864aead,DC-DC converter; MPPT; PV system; renewable energy; system identification Galea F.; Casha O.; Grech I.; Gatt E.; Micallef J.,Experimental measurements of a low power cmos analog mppt power conditioning circuit for energy harvesting applications,2020,"International Journal of Circuits, Systems and Signal Processing",https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099776826&doi=10.46300%2f9106.2020.14.147&partnerID=40&md5=9d05eaaac0ece914d05cd011bd10e6c2,Energy harvesters; Integrated AC-DC Dual Boost converter; Low power low frequency on-chip oscillators; MPPT; Perturb and observe MPPT algorithm; Power conditioning circuits; Sub-threshold analog operation Ge X.; Ahmed F.W.; Rezvani A.; Aljojo N.; Samad S.; Foong L.K.,Implementation of a novel hybrid BAT-Fuzzy controller based MPPT for grid-connected PV-battery system,2020,Control Engineering Practice,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081970550&doi=10.1016%2fj.conengprac.2020.104380&partnerID=40&md5=d0d6b9d950bc9615513602211148c905,Battery; Grid connected; Hybrid BAT-FLC; MPPT; Partial shading; Photovoltaic Jegha A.D.G.; Subathra M.S.P.; Kumar N.M.; Subramaniam U.; Padmanaban S.,A high gain DC-DC converter with grey wolf optimizer based MPPT algorithm for PV fed BLDC motor drive,2020,Applied Sciences (Switzerland),https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085074367&doi=10.3390%2fAPP10082797&partnerID=40&md5=7ac3b05cf18dde28c2b4c3be08422b09,Grey wolf optimizer; High gain DC-DC converter; Hybrid MPPT algorithm; Modified LUO converter; PV water pumping Mokhlis M.; Ferfra M.; El Idrissi R.,High gain observer-based control for grid-connected pv system under partial shading effect,2020,International Journal of Intelligent Engineering and Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090391983&doi=10.22266%2fijies2020.0430.16&partnerID=40&md5=9d1d5f2a968c832fbba77df879c73f0d,Grid connected PV system; High gain observer; Partial shading; SEPIC converter; Sliding mode controller Nayak D.S.; Shivarudraswamy R.,Solar fed bldc motor drive for mixer grinder using a buck-boost converter,2020,Bulletin of Electrical Engineering and Informatics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083171998&doi=10.11591%2feei.v9i1.1667&partnerID=40&md5=dd10691578b3cf601a7da6723773de36,BLDC; Hysteresis current control; MATLAB Mixer grinder; Solar Liu H.-D.; Lin C.-H.; Lu S.-D.,A novel MPPT algorithm considering solar photovoltaic modules and load characteristics for a single stage standalone solar photovoltaic system,2020,IEICE Electronics Express,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091319961&doi=10.1587%2fELEX.17.20200099&partnerID=40&md5=40fd1fbad505c0383712b38f3e6dbc1f,Advanced three-point weight comparison method; MPPT limit detect; Single stage standalone solar photovoltaic system Noghreian E.; Koofigar H.R.,Power control of hybrid energy systems with renewable sources (wind-photovoltaic) using switched systems strategy,2020,"Sustainable Energy, Grids and Networks",https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075363373&doi=10.1016%2fj.segan.2019.100280&partnerID=40&md5=24cfca9ae9f5cdfb223a80c82fdb3894,Energy management strategy; Lyapunov function method; Renewable energy sources; Switched nonlinear system Takruri M.; Farhat M.; Barambones O.; Ramos-Hernanz J.A.; Turkieh M.J.; Badawi M.; AlZoubi H.; Sakur M.A.,Maximum power point tracking of PV system based on machine learning,2020,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078969033&doi=10.3390%2fen13030692&partnerID=40&md5=b04b6f3e7d9b98490b5e4f65707a4f72,Boost-converter; Estimator; Forecasting; General regression neural network; Photovoltaic power system; PID controller; Renewable energy; Support vector regression Jung J.-H.; Jung Y.-H.; Hong S.-K.; Kwon O.-K.,A High Peak Output Power and High Power Conversion Efficiency SIMIMO Converter Using Optimal on-Time Control and Hybrid Zero Current Switching for Energy Harvesting Systems in IoT Applications,2020,IEEE Transactions on Power Electronics,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084042479&doi=10.1109%2fTPEL.2019.2963513&partnerID=40&md5=f13b855c3ade45e01c71bcb1dd2c2d07,Battery charger; energy harvesting; energy management; power integrated circuits Aly M.; Rezk H.,A differential evolution-based optimized fuzzy logic MPPT method for enhancing the maximum power extraction of proton exchange membrane fuel cells,2020,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101122334&doi=10.1109%2fACCESS.2020.3025222&partnerID=40&md5=53afd191009ab0cb3ab494b0a6727bca,Differential evolution optimization algorithm (DEOA); Fuel cell (FC); Fuzzy logic control (FLC); Maximum power point tracking Al-Ammar E.A.; Habib H.U.R.; Kotb K.M.; Wang S.; Ko W.; Elmorshedy M.F.; Waqar A.,Residential Community Load Management Based on Optimal Design of Standalone HRES with Model Predictive Control,2020,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078749895&doi=10.1109%2fACCESS.2020.2965250&partnerID=40&md5=66454487dca36050ac30aba65274a04e,dc-ac power converters; design optimization; Distributed power generation; energy conversion; energy management; energy resources; energy storage; finite control set model predictive control (FCS-MPC); maximum power point tracker (MPPT); microgrids; solar energy; voltage control; wind energy Mirza A.F.; Mansoor M.; Ling Q.; Khan M.I.; Aldossary O.M.,Advanced variable step size incremental conductance mppt for a standalone PV system utilizing a ga-tuned pid controller,2020,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090913931&doi=10.3390%2fen13164153&partnerID=40&md5=2e921d5f916c398e564930c1e5d4b52e,Genetic algorithm (GA); Global maxima (GM); Incremental conductance (IC); Local maxima (LM); Maximum power point tracking (MPPT); Photovoltaic (PV); Proportional integral deferential (PID) Pradhan C.; Senapati M.K.; Malla S.G.; Nayak P.K.; Gjengedal T.,Coordinated power management and control of standalone PV-Hybrid system with modified IWO-based MPPT,2020,IEEE Systems Journal,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105698664&doi=10.1109%2fJSYST.2020.3020275&partnerID=40&md5=203db565869f27e1fc990d61e6ed4be1,Hybrid power generation; Maximum power point (MPP); Modified invasive weed optimization (MIWO); Perturb and observe (P&O); Photovoltaic (PV) system; Voltage control Goudarzian A.; Khosravi A.; Abjadi N.R.,Input–output current regulation of Zeta converter using an optimized dual-loop current controller,2020,Electrical Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075882634&doi=10.1007%2fs00202-019-00872-z&partnerID=40&md5=343d82752a6f3f04f7d1009f2e7fb6e5,Cascade control strategy; Current regulation; PI compensator design; Zeta converter Chennoufi K.; Ferfra M.,Fast and efficient maximum power point tracking controller for photovoltaic modules,2020,"Advances in Science, Technology and Engineering Systems",https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096795318&doi=10.25046%2faj050674&partnerID=40&md5=2bd0eaab37ecefa7d90808e18d4ae042,Artificial Neural Network; Backstepping; Double diode model; MPPT; SEPIC Sitharthan R.; Karthikeyan M.; Sundar D.S.; Rajasekaran S.,Adaptive hybrid intelligent MPPT controller to approximate effectual wind speed and optimal rotor speed of variable speed wind turbine,2020,ISA Transactions,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067076407&doi=10.1016%2fj.isatra.2019.05.029&partnerID=40&md5=54223847f2744562aacda09d34833f51,Doubly-fed induction generator; Maximum power point tracking; Particle swarm optimization; Radial basis function neural network; Wind turbine Fadil J.; Soedibyo S.; Ashari M.,Novel of vertical axis wind turbine with variable swept area using fuzzy logic controller,2020,International Journal of Intelligent Engineering and Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087065027&doi=10.22266%2fIJIES2020.0630.24&partnerID=40&md5=95600d561bdc8ed75cc2da1d540cfea0,Swept area; Telescopic wind turbine; Variable blade; Variable speed; VAWT Mukundan C.M.N.; Jayaprakash P.; Subramaniam U.; Almakhles D.J.,Binary hybrid multilevel inverter-based grid integrated solar energy conversion system with damped sogi control,2020,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081691208&doi=10.1109%2fACCESS.2020.2974773&partnerID=40&md5=fbb9c3e28932ded639814c67f9d4899b,Multilevel inverter; Power quality; Simo-sepic; Solar pv Bin Tamrin M.S.; Ahmad M.R.,Simulation of adaptive power management circuit for hybrid energy harvester and real-time sensing application,2020,International Journal of Power Electronics and Drive Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081642212&doi=10.11591%2fijpeds.v11.i2.pp658-666&partnerID=40&md5=faa6ccadb7152d2f5914b16dd95417c1,Fractional open-circuit voltage; Hybrid energy harvester; Piezoelectric energy; Power management circuit; Thermal energy Manivasagam R.; Kalpana K.,Speed intensity of BLDC motor with fuzzy base peak current detection,2020,International Journal of Scientific and Technology Research,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082932162&partnerID=40&md5=e64669debe85e66bea6e7316289403f3,BLDC motor; Fuzzy Logic Controller; Fuzzy rules; Permanent Magnet (PM); PID controller Bankupalli P.T.; Ghosh S.; Kumar L.; Samanta S.; Jain S.,Operational Adaptability of PEM Fuel Cell for Optimal Voltage Regulation with Maximum Power Extraction,2020,IEEE Transactions on Energy Conversion,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081080293&doi=10.1109%2fTEC.2019.2949754&partnerID=40&md5=30f9e2680d99bd8183111c86a306d6ad,Adaptive controller; fuel cell; maximum power extraction; stack efficiency; voltage regulation Huang G.; He B.; Meng F.; Rodriguez D.,Evaluation of a multi-objective model in energy generation under the influence of different hydrological conditions based on Moth Search Algorithm,2020,International Journal of Ambient Energy,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098511204&doi=10.1080%2f01430750.2020.1861091&partnerID=40&md5=37c2cdf8f9961d364be70369dc7b76b6,hydropower; optimisation; renewable energy; Solar energy; the hybrid system Venkatesh V.; Nazar Ali A.; Sivaraman P.R.; Remkumar K.P.; Shyam D.,Performance enhancement of elementary additional series positive output super lift converter fed PMBLDC drive,2020,International Journal of Scientific and Technology Research,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078848797&partnerID=40&md5=3af21e544987608d397a7dfedd09335d,Diode bridge rectifier; Elementary additional series positive output super lift converter; Voltage source inverter Regaya C.B.; Farhani F.; Hamdi H.; Zaafouri A.; Chaari A.,Robust anfis vector control of induction motor drive for high-performance speed control supplied by a photovoltaic generator,2020,WSEAS Transactions on Systems and Control,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091131701&doi=10.37394%2f23203.2020.15.37&partnerID=40&md5=a8d13ab8a0960613e9435d7e07b844cb,Adaptive control; Adaptive Neuro-Fuzzy Inference System; Induction motor; MPPT; Photovoltaic systems; PI gains adaptation; Vector control Ali A.; Almutairi K.; Padmanaban S.; Tirth V.; Algarni S.; Irshad K.; Islam S.; Zahir M.H.; Shafiullah M.; Malik M.Z.,Investigation of MPPT Techniques under Uniform and Non-Uniform Solar Irradiation Condition-A Retrospection,2020,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089536336&doi=10.1109%2fACCESS.2020.3007710&partnerID=40&md5=ea23029c560cf890e4b8795cf749939c,hybrid MPPT methods; Maximum power point tracking; non-uniform solar irradiation; online and offline MPPT; photovoltaic array; uniform solar irradiance Nayak D.S.; Shivarudraswamy R.,Solar fed BLDC motor drive for mixer grinder using a boost converter,2020,International Journal of Power Electronics and Drive Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077896833&doi=10.11591%2fijpeds.v11.i1.pp56-63&partnerID=40&md5=f77862260054b145aa9aaf5451c9a206,BLDC; Hysteresis current control; MATLAB; Mixer grinder; Solar Revathi D.; Mohan Kumar G.,Analysis of LFC in PV-thermal-thermal interconnected power system using fuzzy gain scheduling,2020,International Transactions on Electrical Energy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079405595&doi=10.1002%2f2050-7038.12336&partnerID=40&md5=3f8e9fbe60e745085dbbb7880eaee5f8,fuzzy gain scheduling controller; load frequency control; MPPT; PI; PV-thermal-thermal interconnected Khan M.A.; Haque A.; Kurukuru V.S.B.,Performance assessment of stand-alone transformerless inverters,2020,International Transactions on Electrical Energy Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070744957&doi=10.1002%2f2050-7038.12156&partnerID=40&md5=a4823c1398dd1b1346f8ae838d32ff0b,adaptive neural fuzzy inference system (FIS); control system; fuzzy; proportional integrator derivative (PID); solar inverter; transformerless Güngör O.; Yüksek H.İ.,MODELING OF BOOST AND CUK CONVERTERS AND COMPARISON OF THEIR PERFORMANCE IN MPPT,2020,Sigma Journal of Engineering and Natural Sciences,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149994089&partnerID=40&md5=0fd188c5124e82d4b12a0a8b6645e107,Circuit linearization; DC-DC converter modelling; maximum power point tracking (MPPT); state-space averaging Ullah N.; Farooq Z.; Sami I.; Chowdhury M.S.; Techato K.; Alkhammash H.I.,Industrial Grade Adaptive Control Scheme for a Micro-Grid Integrated Dual Active Bridge Driven Battery Storage System,2020,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143676940&doi=10.1109%2fACCESS.2020.3039947&partnerID=40&md5=0e47ee7244a4f187e42a19efb190360e,DC micro-grid; energy management; fractional calculus; fractional control theory; industrial grade control; robust control; sliding mode control Khan M.Y.A.; Liu H.; Yang Z.; Yuan X.,"A comprehensive review on grid connected photovoltaic inverters, their modulation techniques, and control strategies",2020,Energies,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090895119&doi=10.3390%2fen13164185&partnerID=40&md5=e4120b562ca5c2f5f54f6477941d4ad1,Control strategies; Current control; Grid-connected PV inverters; Grid-connected PV system; Modulation techniques; Multi-level inverters Abidin Z.; Muttaqin A.; Maulana E.; Ramadhan M.G.,Buck converter optimization using P&O algorithm for pv system based battery charger,2020,International Journal of Power Electronics and Drive Systems,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081596606&doi=10.11591%2fijpeds.v11.i2.pp844-850&partnerID=40&md5=6511080844635b3b27f41c3966d9651e,Battery charger; Buck converter; Optimization; P&O algorithm; Photovoltaic system Farah L.; Hussain A.; Kerrouche A.; Ieracitano C.; Ahmad J.; Mahmud M.,A highly-efficient fuzzy-based controller with high reduction inputs and membership functions for a grid-connected photovoltaic system,2020,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091820722&doi=10.1109%2fACCESS.2020.3016981&partnerID=40&md5=9923d74b66502f7be6a3af6662f73146,Boost converter; Current variation; Grid connection; High reduced fuzzy based MPPT controller (HRFLC); Photovoltaic panel; Three level VSC Kundalik M.D.; Karpagavalli P.,Analyzing fuzzy logic approach maximum power point tracking (MPPT) for solar power generation,2020,International Journal of Advanced Science and Technology,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081554889&partnerID=40&md5=bb4d5502272189b046205c06f3681a16,Conductance; Maximum; Perturbation; Photovoltaic; Power de Andrade G.A.; Mendes P.R.C.; García-Clúa J.G.; Normey-Rico J.E.,Control of a grid assisted PV-H2 production system: A comparative study between optimal control and hybrid MPC,2020,Journal of Process Control,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087207828&doi=10.1016%2fj.jprocont.2020.06.008&partnerID=40&md5=1632efd7f61ebb61505e67808c08e720,Hybrid model predictive control; Hydrogen production; Mixed logical dynamical systems; Optimal control; Photovoltaic energy; Pontryagin's maximum principle Goudarzian A.; Khosravi A.,Voltage-Controlled Quadratic Buck Converter for a DC Power Management System with Constant Current Load,2020,"Journal of Control, Automation and Electrical Systems",https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069911551&doi=10.1007%2fs40313-019-00504-8&partnerID=40&md5=8859ae55ec5f696ff8a949bd8922219f,Constant power load; Control stability; DC power management; Quadratic buck converter Gautam A.R.; Fulwani D.M.; Makineni R.R.; Rathore A.K.; Singh D.,Control Strategies and Power Decoupling Topologies to Mitigate 2ω-Ripple in Single-Phase Inverters: A Review and Open Challenges,2020,IEEE Access,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091737414&doi=10.1109%2fACCESS.2020.3015315&partnerID=40&md5=a0c3cb1e18e823c42d076f3f41612bc2,2ω-ripple; control strategies; power-decoupling schemes; single-phase inverter Nayak D.S.; Shivarudraswamy R.,A solar fed BLDC motor drive for mixer grinder using a buck converter,2020,International Journal of Electrical and Computer Engineering,https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075350191&doi=10.11591%2fijece.v10i2.pp1113-1121&partnerID=40&md5=da038076789770030c69bd2e3a9c3c92,BLDC; Hysteresis current control; MATLAB; Mixer grinder; Solar