skip to main content

Modification Reactor Biogas With Isolation Water And Scrubber To Increase Biomethane Production

1Department of Industrial Chemical Engineering Technology, Lampung State Polytechnic, No.10, Soekarno Hatta Rd, Rajabasa, Bandar Lampung City, 35141, Indonesia

2Department of Chemical Engineering and Materials Science, Yuan Ze University, No. 135, Yuandong Rd, Zhongli District, Taoyuan City, 320, Taiwan

Open Access Copyright (c) 2024 Jurnal Energi Baru dan Terbarukan
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Biogas is alternative energy produced through the process of fermenting organic materials in anaerobic conditions to produce methane gas (CH4). The quality of the biogas depends on the concentration of the CH4, the higher the content, the better the quality. One way to improve the quality of biogas so that the content of methane gases in biogases increases and can reduce gases such as CO2, H2S, and other gases is by using a scrubber that contains compound fertilizer as its purification. The objective of this research is to reuse organic waste into useful biogas as alternative energy, and to apply water as a methane gas isolator so as not to be wasted on batch and scrubber reactor processes for the purification of H2S content. The old test results of the biogas flame and the color test of the flame on the 20th and 28th days could not be done, because of the little gas formed to the pressure of the gas generated 0 atm. On the 40th day where the gas pressure generated 5 atm, but the results of the biogas fire test did not come out because the gas produced was still small so the flow of gas to the stove did not reach. Biogas production needs to be increased so that the long-standing test of flame and flame color of biogas can be done well. This research also was explored step by step to producing biogas using organic waste. In addition, consideration should be given to the use of other methods to increase gas production so that these alternative energy applications can run optimally.

Fulltext View|Download
Keywords: organic waste; modification digester; water isolation; scrubber; biomethane

Article Metrics:

  1. Akhtar, N., Syakir Ishak, M. I., Bhawani, S. A., & Umar, K. (2021). Various natural and anthropogenic factors responsible for water quality degradation: A review. Water, 13(19), 2660
  2. Archana, K., Visckram, A., Kumar, P. S., Manikandan, S., Saravanan, A., & Natrayan, L. (2024). A review on recent technological breakthroughs in anaerobic digestion of organic biowaste for biogas generation: Challenges towards sustainable development goals. Fuel, 358, 130298
  3. Dhull, P., Lohchab, R. K., Kumar, S., Kumari, M., Shaloo, & Bhankhar, A. K. (2024). Anaerobic digestion: advance techniques for enhanced biomethane/biogas production as a source of renewable energy. BioEnergy Research, 17(2), 1228-1249
  4. Ding, Y., Zhao, J., Liu, J.-W., Zhou, J., Cheng, L., Zhao, J., Shao, Z., Iris, Ç., Pan, B., & Li, X. (2021). A review of China’s municipal solid waste (MSW) and comparison with international regions: Management and technologies in treatment and resource utilization. Journal of Cleaner Production, 293, 126144
  5. Fitri, M. A., & Dhaniswara, T. K. (2018). Pemanfaatan kotoran sapi dan sampah sayur pada pembuatan biogas dengan fermentasi sampah sayuran. Journal of Research and Technology, 4(1), 47-54
  6. Fitri, N. H., Ramandani, A. A., Cendekia, D., & Teguh, D. (2023). Utilization of Bamboo Waste by Engineering Acid Hydrolysis (H2SO4) to Produce Furfural Compounds [Research paper]. CHEMICA : Jurnal Teknik Kimia, 10(2), 76-86. https://doi.org/https://doi.org/10.26555/chemica.v10i2.26609
  7. Francisco López, A., Lago Rodríguez, T., Faraji Abdolmaleki, S., Galera Martínez, M., & Bello Bugallo, P. M. (2024). From Biogas to Biomethane: An In-Depth Review of Upgrading Technologies That Enhance Sustainability and Reduce Greenhouse Gas Emissions. Applied Sciences, 14(6), 2342
  8. Karthikeyan, P. K., Bandulasena, H. C. H., & Radu, T. (2024). A comparative analysis of pre-treatment technologies for enhanced biogas production from anaerobic digestion of lignocellulosic waste. Industrial Crops and Products, 215, 118591
  9. Loboichenko, V., Iranzo, A., Casado-Manzano, M., Navas, S. J., Pino, F., & Rosa, F. (2024). Study of the use of biogas as an energy vector for microgrids. Renewable and Sustainable Energy Reviews, 200, 114574
  10. Murniati, D. (2024). Peningkatan Hasil Produksi Biogas Melalui Penggunaan Bahan Tambahan Seperti Nitrogen (N), Fosfor (P), Dan Kalium (K) Dalam Pengolahan Sampah Domestik. Venus: Jurnal Publikasi Rumpun Ilmu Teknik, 2(2), 18-21
  11. Najafi, A., & Acaroğlu, H. (2024). Current trend of bioenergy of biogas, biomethane, and hydrogen in developed countries. In Microbial Biotechnology for Bioenergy (pp. 115-136). Elsevier
  12. Paramitha, S., & Ikhsan, D. (2012). Pembuatan biogas dari sampah sayuran. Jurnal Teknologi Kimia dan Industri, 1(1), 103-108
  13. Ramandani, A. A., Aji, S. P., Hargiawan, A., Herlambang, M. J., & Shintawati, S. (2023). Pengaruh Limbah Batang Pisang (Musa Paradisiaca) Dan Jerami Padi (Oryza Sativa L.) Terhadap Produksi Biogas. JoASCE (Journal Applied of Science and Chemical Engineering), 1(2), 44-50
  14. Rhohman, F. (2021). Analisa matematis hasil biogas dari sampah sayuran berdasarkan perbedaan jumlah bahan. Jurnal Mesin Nusantara, 4(2), 84-89
  15. Romianingsih, N. P. W. (2023). Waste to energy in Indonesia: opportunities and challenges. Journal of Sustainability, Society, and Eco-Welfare, 1(1)
  16. Septiariva, I. Y., Suryawan, I. W. K., Suhardono, S., & Sari, M. M. (2023). Evaluasi Kotoran Kelinci sebagai Bioaktivator untuk Produksi Biogas dari Sampah Sayuran. Jurnal Teknologi Lingkungan Lahan Basah, 11(3), 810-817
  17. Siboro, E. S., Surya, E., & Herlina, N. (2013). Pembuatan pupuk cair dan biogas dari campuran limbah sayuran. Jurnal Teknik Kimia USU, 2(3), 40-43
  18. Slingo, J., & Slingo, M. (2024). The science of climate change and the effect of anaesthetic gas emissions. Anaesthesia, 79(3), 252-260
  19. Sutanto, T. S., & Supriyanto, T. (2019). PROSES PRODUKSI BIOGAS DARI SAMPAH ORGANIK RUMAH TANGGA DI WILAYAH DUREN MEKAR. Seminar Nasional Teknik Mesin 2018,
  20. Terziev, A., Zlateva, P., & Ivanov, M. (2024). Enhancing the Fermentation Process in Biogas Production from Animal and Plant Waste Substrates in the Southeastern Region of Bulgaria. Fermentation, 10(4), 187
  21. Uda, C. N., Philips, A. I., Clement, H. N., Orede, O. M., & Aliegu, H. F. (2024). Impact on Greenhouse Effect of the Heat Flow of the Earth Surface. World News of Natural Sciences, 53, 32-48
  22. Urfi, M., Babar, Z. B., Munir, S., Rizwan, K., & Majeed, I. (2024). Production of volatile fatty acids from biomass, their recovery and applications in fuel and other valued products formation. In Nanomaterials in Biomass Conversion (pp. 349-367). Elsevier
  23. Wang, M., Chen, H., & Chang, S. (2024). Investigation of volatile fatty acids production in biological hydrolysis of waste activated sludge via microbial community network and fermentation pathway analyses. Journal of Environmental Chemical Engineering, 12(2), 112056
  24. Widowati, H. (2019). Komposisi sampah di Indonesia didominasi sampah organik. Dalam: https://databoks. katadata. co. id/datapublish/2019/11/01/komposisi-sampah-di-indonesia-didominasi-sampah-organik. Diakses pada, 27

Last update:

No citation recorded.

Last update:

No citation recorded.