skip to main content

PENGARUH KONTROLER MAXIMUM POWER POINT TRACKING (MPPT) TERHADAP EFISIENSI DAYA VERTICAL AXIS WIND TURBINE (VAWT) TIPE SAVONIUS DUA SUDU

Departemen Teknik Mesin, Sekolah Vokasi, Universitas Gadjah Mada, Jl. Yacaranda Sekip Unit IV Yogyakarta 55281, Indonesia

Open Access Copyright (c) 2023 Jurnal Energi Baru dan Terbarukan
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
The purpose of this research is to determine the effect of Maximum Power Point Tracking (MPPT) controller on the power efficiency of a two-bladed Savonius vertical axis wind turbine (VAWT) with a dimensional diameter of 0.9 m and a height of 1 meter, using 1 mm thick stainless steel plate blades. The MPPT controller is applied to the two-bladed Savonius wind turbine to maintain its operation at the maximum power point. The Perturb & Observe type MPPT controller is used in the study to compare the power output of the Savonius wind turbine when the MPPT system is inactive and when it is active, with three variations of load using resistors of 470 ohm, 560 ohm, and 1000 ohm. The research is conducted by subjecting the turbine blades to three variations of wind thrust at speeds of 4.9 m/s, 5.8 m/s, and 6.4 m/s. The testing without using MPPT resulted in an average power of 0.199 Watt, while using MPPT resulted in an average power of 0.620 Watt. The research findings indicate an average power difference of 0.421 Watt, representing an increase of 317.713%. The average power efficiency of the turbine increased by 2.331% compared to the calculated maximum power of the two-bladed Savonius wind turbine. The average power coefficient (Cp) of the two-bladed Savonius wind turbine without MPPT and with MPPT is 0.159% and 0.509%, respectively, indicating a positive effect of MPPT as it led to an average increase in power coefficient of 0.350%.
Fulltext View|Download
Keywords: Renewable Energy, Savonius Wind Turbine, MPPT

Article Metrics:

  1. Anugrah, D., Nrp, E., Pujiantara, A. M., Prof, M. T., Mauridhi, I., Purnomo, H., & Eng, M. (2016). Design Maximum Power Point Tracking for Wind Turbine Using Modified Perturb & Observe (P&O) Based on Wind Velocity Prediction
  2. Arief, M. F., & Musafa, A. (2019). Perancangan Sistem Mppt Untuk Dua Turbin Angin Kapasitas 300 Watt Pada Kondisi Kecepatan Angin Rendah Menggunakan Metode Perturb & Observe (P&O). Maestro, 2(2), 447–454. https://jom.ft.budiluhur.ac.id/index.php/maestro/article/view/286%0Ahttps://jom.ft.budiluhur.ac.id/index.php/maestro/article/download/286/109
  3. Craene, A. P. De. (2021). How to build a Wind Turbine MPPT Regulator within Li-ion , LifePo4 or Acid Lead battery configuration. https://www.hackster.io/philippedc/a-wind-turbine-mppt-regulator-with-an-arduino-uno-783462
  4. Fadila, A., Zakaria, I., Fauzan, M., Sahid, & Supriyo. (2019). Rancang Bangun Turbin Angin Tipe Darrieus Tiga Sudu Rangkap Tiga dengan Profil NACA 0006. Eksergi, 15(3), 102. https://doi.org/10.32497/eksergi.v15i3.1785
  5. Fauzi, I. R. W., Sugati, D., Yawara, E., & Subardi. (2019). Unjuk Kerja Turbin Angin Dengan Profil Sudu NACA 4412 Dengan Metode Simulasi. Seminar Nasional Sains Teknologi dan Inovasi Indonesia (SENASTINDO AAU), 1(1), 19–26
  6. Hau, E. (2013). Wind Turbines Fundamentals, Technologies, Application, Economics. Springer. https://doi.org/10.4324/9780203103289-9
  7. Hidayat, M. F., & Surbaki, A. (2021). Turbin Angin Savonius 3 Sudu Untuk Lampu Perangkap Hama Untuk Masyarakat Kabupaten Cianjur, Jawa Barat. KAMI MENGABDI, 1, 38–55
  8. Kurniawan, Y., & Dharmawan, I. B. (2021). Prototipe Turbin Angin Savonius Variasi Extra Layers dengan Pengujian Real Wind Condition Prototype Savonius Wind Turbine Extra Layers Variation With Experiment Real Wind Condition. Jurnal Polimesin, 19(1), 48–52
  9. Mohamed, S. A., & Sattar, M. A. El. (2019). A comparative study of P&O and INC maximum power point tracking techniques for grid-connected PV systems. SN Applied Sciences, 1(2), 1–13. https://doi.org/10.1007/s42452-018-0134-4
  10. Mousa, H. H. H., Youssef, A. R., & Mohamed, E. E. M. (2021). State of the art perturb and observe MPPT algorithms based wind energy conversion systems: A technology review. International Journal of Electrical Power and Energy Systems, 126(PA), 106598. https://doi.org/10.1016/j.ijepes.2020.106598
  11. Mubarok, H., & Whiancaka, B. A. (2020). Optimasi Sistem Turbin Angin Menggunakan Maximum Power Point Tracking (MPPT) dengan Metode Particle Swarm Optimization (PSO). Techné : Jurnal Ilmiah Elektroteknika, 19(01), 1–10. https://doi.org/10.31358/techne.v19i01.226
  12. Nugroho, D., Utomo, S. B., & Suprajitno, A. (2021). Desain Turbin Angin 1500 Watt dengan MPPT Berbasis Algoritma Perturb dan Observe untuk Mengoptimalkan Pembangkit Listrik Tenaga Angin. 4
  13. Otong, M., & Bajuri, R. M. (2017). Maximum Power Point Tracking (MPPT) Pada Sistem Pembangkit Listrik Tenaga Angin Menggunakan Buck-Boost Converter. Setrum : Sistem Kendali-Tenaga-elektronika-telekomunikasi-komputer, 5(2), 103. https://doi.org/10.36055/setrum.v5i2.1563
  14. Sahim, K., Santoso, D., & Puspitasari, D. (2018). Investigations on the Effect of Radius Rotor in Combined Darrieus-Savonius Wind Turbine. International Journal of Rotating Machinery, 2018. https://doi.org/10.1155/2018/3568542
  15. Tawakal, I., & Siregar, I. H. (2020). Uji Eksperimen Kinerja Model Turbin Angin Jenis Swirling Savonius Deflektor Diam Dengan Penambahan Free Drag Reducing Di Terowongan Angin. Jurnal Teknik Mesin, 8(1), 153–160
  16. Trifiananto, M., Putra, I. S., & Ramadhan, M. E. (2022). Analisis Performa Turbin Angin Vawt (Vertical Axis Wind Turbine) Tipe Hybrid Savonius Darrieus Naca 4712. Rotor, 15(1), 1. https://doi.org/10.19184/rotor.v15i1.29099

Last update:

No citation recorded.

Last update:

No citation recorded.

slot gacor slot