skip to main content

Peranan Gasifikasi Batubara Menjadi Dimetil Eter (DME) dalam Bauran Energi Baru dan Kontribusinya pada Penurunan Emisi Gas Rumah Kaca di Indonesia

1Magister Energi, Sekolah Pascasarjana, Universitas Diponegoro, Indonesia

2Departemen Teknik Mesin, Fakultas Teknik, Universitas Diponegoro, Indonesia

Open Access Copyright (c) 2023 Jurnal Energi Baru dan Terbarukan
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Bauran energi primer di Indonesia masih didominasi oleh energi fosil, salah satunya batubara. Indonesia tercatat memiliki sumber daya batubara sebesar 110,07 Milyar Ton dan cadangan sebesar 36,28 Milyar Ton, yang didominasi oleh batubara kalori rendah dan sedang. Sekitar 72% dari produksi batubara dalam negeri dilakukan ekspor. Saat ini Pemerintah tengah mendorong pemanfaatan batubara untuk peningkatan nilai tambah (PNT) melalui gasifikasi batubara menjadi Dimetil Eter (DME). DME memiliki karakteristik yang serupa dengan Liquefied Petroleum Gas (LPG) sebagai bahan bakar untuk memasak rumah tangga. Pemanfaatan batubara melalui gasifikasi batubara menjadi DME diharapkan mampu mengurangi impor LPG yang pada tahun 2021 mencapai 6,33 juta ton (75,84%). Melalui beberapa regulasi dan insentif yang telah disiapkan oleh Pemerintah, gasifikasi batubara diharapkan dapat menekan import LPG hingga 1,9 juta ton pada tahun 2050. Selain terciptanya ketahanan energi nasional, upaya ini juga berkontribusi terhadap peningkatan bauran energi baru sebesar 3% pada tahun 2025 dan 1,9% pada tahun 2050, serta berkontribusi pada penurunan gas rumah kaca hingga 14,03% pada tahun 2025 dan 33,35% pada tahun 2050 pada pembakaran DME sebagai bahan bakar memasak rumah tangga. Untuk mengurangi timbulan emisi CO2, perlu dilakukan beberapa pengembangan dalam produksi DME diantaranya menggunakan biomassa sebagai bahan baku, penangkapan CO2, dan yang baru-baru ini dikembangkan adalah memanfaatkan CO2 yang ditangkap sebagai bahan baku untuk memproduksi DME.
Fulltext View|Download
Keywords: gasifikasi batubara, DME, energi baru, gas rumah kaca

Article Metrics:

  1. AEER. (2020). Hilirisasi Batubara Dalam Bentuk Dimethyl Ether (DME) Akan Meningkatkan Emisi Gas Rumah Kaca. http://aeer.info
  2. Anggarani, R., Wibowo, C. S., & Rulianto, D. (2014). Application of dimethyl ether as LPG substitution for household stove. Energy Procedia, 47, 227–234. https://doi.org/10.1016/j.egypro.2014.01.218
  3. Arya, P. K., Tupkari, S., Satish, K., Thakre, G. D., & Shukla, B. M. (2016). DME blended LPG as a cooking fuel option for Indian household: A review. In Renewable and Sustainable Energy Reviews (Vol. 53, pp. 1591–1601). Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.09.007
  4. Ateka, A., Ereña, J., Bilbao, J., & Aguayo, A. T. (2018). Kinetic modeling of the direct synthesis of dimethyl ether over a CuO ZnO MnO/SAPO 18 catalyst and assessment of the CO2 conversion. Fuel Processing Technology, 181, 233–243. https://doi.org/10.1016/j.fuproc.2018.09.024
  5. Azizi, Z., Rezaeimanesh, M., Tohidian, T., & Rahimpour, M. R. (2014). Dimethyl ether: A review of technologies and production challenges. In Chemical Engineering and Processing: Process Intensification (Vol. 82, pp. 150–172). Elsevier. https://doi.org/10.1016/j.cep.2014.06.007
  6. Badan Geologi Kementerian Energi dan Sumber Daya Mineral. (2022). Neraca Sumber Daya dan Cadangan Batubara Indonesia 2021
  7. Badan Pengkajian dan Penerapan Teknologi. (2021). Outlook Energi Indonesia 2021
  8. Bhattacharya, S., Kabir, K. B., & Hein, K. (2013). Dimethyl ether synthesis from Victorian brown coal through gasification - Current status, and research and development needs. In Progress in Energy and Combustion Science (Vol. 39, Issue 6, pp. 577–605). https://doi.org/10.1016/j.pecs.2013.06.003
  9. Brown, D. M., Bhatt, B. L., Hsiung, T. H., Lewnard, J. J., & Waller, F. J. (1991). Novel Technology for the Synthesis of Dimetyl Ether from Syngas. Catalysis Today , 8(3), 279–304
  10. Centi, G., Quadrelli, E. A., & Perathoner, S. (2013). Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy & Environmental Science, 6(6), 1711. https://doi.org/10.1039/c3ee00056g
  11. Chang, J., Fu, Y., & Luo, Z. (2012). Experimental study for dimethyl ether production from biomass gasification and simulation on dimethyl ether production. Biomass and Bioenergy, 39, 67–72. https://doi.org/10.1016/j.biombioe.2011.01.044
  12. Chen, J., Yang, S., & Qian, Y. (2019). A novel path for carbon-rich resource utilization with lower emission and higher efficiency: An integrated process of coal gasification and coking to methanol production. Energy, 177, 304–318. https://doi.org/10.1016/j.energy.2019.03.161
  13. Direktorat Jenderal Mineral dan Batubara. (2021). Laporan Kinerja Tahun 2020
  14. Felixius, V., Angelina, N., & Weslie, T. (2021). Achieving Sustainable Energy Security in Indonesia Through Substitution of Liquefied Petroleum Gas with Dimethyl Ether as Household Fuel. In Indonesian Journal of Energy (Vol. 4, Issue 2)
  15. Fortin, C., Gianfolcaro, N., Gonzalez, R., Lohest, J., Lonneux, A., Mordant, P., Kesnelle, A., Siliki, N., Peiffer, T., Renson, R., & Schmitz, C. (2020). Dimethyl ether, A review of production processes and a modeling of the indirect route
  16. Good, D. A., Francisco, J. S., Jain, A. K., & Wuebbles, D. J. (1998). Lifetimes and global warming potentials for dimethyl ether and for fluorinated ethers: CH3OCF3 (E143a), CHF2OCHF2 (E134), CHF2OCF3 (E125). Journal of Geophysical Research Atmospheres, 103(D21), 28181–28186. https://doi.org/10.1029/98JD01880
  17. International DME Association. (2013). IDA Fact Sheet No. 1
  18. Johnson, E. (2009). Charcoal versus LPG grilling: A carbon-footprint comparison. Environmental Impact Assessment Review, 29(6), 370–378. https://doi.org/10.1016/j.eiar.2009.02.004
  19. Kabir, K. B., & Bhattacharya, S. P. (2011, September 18). Dimethyl ether production from gasification of victorian brown coal-process model and related preliminary experiments. CHEMECA 2011: Engineering a Better World. https://www.researchgate.net/publication/233959719
  20. Kaushik, L. K., & Muthukumar, P. (2018). Life cycle Assessment (LCA) and Techno-economic Assessment (TEA) of medium scale (5–10 kW) LPG cooking stove with two-layer porous radiant burner. Applied Thermal Engineering, 133, 316–326. https://doi.org/10.1016/j.applthermaleng.2018.01.050
  21. Kementerian Energi dan Sumber Daya Mineral Republik Indonesia. (2022a). Handbook of Energy & Economic Statistics of Indonesia
  22. Kementerian Energi dan Sumber Daya Mineral Republik Indonesia. (2022b). Laporan Kinerja Kementerian ESDM 2021
  23. Kim, S., Kim, J., & Yoon, E. S. (2012). Evaluation of coal-based dimethyl ether production system using life cycle assessment in South Korea. Computer Aided Chemical Engineering , 31, 1387–1391. https://doi.org/10.1016/B978-0-444-59506-5.50108-5
  24. Larson, E. D., & Tingjin, R. (2003). Synthetic fuel production by indirect coal liquefaction. Energy for Sustainable Development, 7(4), 79–102. https://doi.org/10.1016/S0973-0826(08)60381-6
  25. Larson, E. D., & Yang, H. (2004). Dimethyl ether (DME) from coal as a household cooking fuel in China. Energy for Sustainable Development, 8(3), 115–126. https://doi.org/10.1016/S0973-0826(08)60473-1
  26. Lecksiwilai, N., Gheewala, S. H., Sagisaka, M., & Yamaguchi, K. (2016). Net Energy Ratio and Life cycle greenhouse gases (GHG) assessment of bio-dimethyl ether (DME) produced from various agricultural residues in Thailand. Journal of Cleaner Production, 134(Part B), 523–531. https://doi.org/10.1016/j.jclepro.2015.10.085
  27. Li, H., Zhang, R., Wang, T., Sun, X., Hou, C., Xu, R., Wu, Y., & Tang, Z. (2022). Simulation of H2S and CO2 removal from IGCC syngas by cryogenic distillation. Carbon Capture Science & Technology, 3, 100012. https://doi.org/10.1016/j.ccst.2021.100012
  28. Liu, G., & Larson, E. D. (2014). Gasoline from coal via DME with electricity co-production and CO2 capture. Energy Procedia, 63, 7367–7378. https://doi.org/10.1016/j.egypro.2014.11.773
  29. Makos, P., Słupek, E., Sobczak, J., Zabrocki, D., Hupka, J., & Rogala, A. (2019). Dimethyl ether (DME) as potential environmental friendly fuel. E3S Web of Conferences, 116. https://doi.org/10.1051/e3sconf/201911600048
  30. Marchionna, M., Patrini, R., Sanfilippo, D., & Migliavacca, G. (2008). Fundamental investigations on di-methyl ether (DME) as LPG substitute or make-up for domestic uses. Fuel Processing Technology, 89(12), 1255–1261. https://doi.org/10.1016/j.fuproc.2008.07.013
  31. Masudi, A., Che Jusoh, N. W., & Muraza, O. (2020). Recent progress on low rank coal conversion to dimethyl ether as clean fuel: A critical review. In Journal of Cleaner Production (Vol. 277). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2020.124024
  32. Midilli, A., Kucuk, H., Topal, M. E., Akbulut, U., & Dincer, I. (2021). A comprehensive review on hydrogen production from coal gasification: Challenges and Opportunities. In International Journal of Hydrogen Energy (Vol. 46, Issue 50, pp. 25385–25412). Elsevier Ltd. https://doi.org/10.1016/j.ijhydene.2021.05.088
  33. Murti, G. W., Priyanto, U., Masfuri, I., & Adelia, N. (2021). The Effect Of Dimethyl Ether (D.M.E.) as LPG Substitution On Household Stove: Mixture Stability, Stove Efficiency, Fuel Consumption, And Materials Testing. 15(2), 77–86
  34. Nakyai, T., & Saebea, D. (2019). Exergoeconomic comparison of syngas production from biomass, coal, and natural gas for dimethyl ether synthesis in single-step and two-step processes. Journal of Cleaner Production, 241, 118334. https://doi.org/10.1016/j.jclepro.2019.118334
  35. Narnaware, S. L., & Panwar, N. L. (2022). Biomass gasification for climate change mitigation and policy framework in India: A review. In Bioresource Technology Reports (Vol. 17). Elsevier Ltd. https://doi.org/10.1016/j.biteb.2021.100892
  36. Parbowo, H. S., Ardy, A., & Susanto, H. (2019). Techno-economic analysis of Dimethyl Ether production using Oil Palm Empty Fruit Bunches as feedstock – a case study for Riau. IOP Conference Series: Materials Science and Engineering, 543(1), 012060. https://doi.org/10.1088/1757-899X/543/1/012060
  37. Sasongko, N. A., Lambok, H., & Silalahi, M. A. O. (2011). Tinjauan Perkembangan Teknologi Gasifikasi Batubara di Indonesia. Prosiding Seminar Nasional Fundamental Dan Aplikasi Teknik Kimia 2011, 1–5
  38. Semelsberger, T. A., Borup, R. L., & Greene, H. L. (2006). Dimethyl ether (DME) as an alternative fuel. Journal of Power Sources, 156(2), 497–511. https://doi.org/10.1016/j.jpowsour.2005.05.082
  39. Shahrier, F., Jahan Eva, I., Mahi, A., Sadid Alam, C., & Harunur Rashid, A. (2020). Literature Review on LCA of LPG as a Transportation and Cooking Fuel. Proceeding of the International Conference on Industrial & Mechanical Engineering and Operation Management
  40. Sikarwar, V. S., Zhao, M., Fennell, P. S., Shah, N., & Anthony, E. J. (2017). Progress in biofuel production from gasification. Progress in Energy and Combustion Science, 61, 189–248. https://doi.org/10.1016/j.pecs.2017.04.001
  41. Tezer, Ö., Karabağ, N., Öngen, A., Çolpan, C. Ö., & Ayol, A. (2022). Biomass gasification for sustainable energy production: A review. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.02.158
  42. Tomatis, M., Mahmud Parvez, A., Afzal, M. T., Mareta, S., Wu, T., He, J., & He, T. (2019). Utilization of CO2 in renewable DME fuel production: A life cycle analysis (LCA)-based case study in China. Fuel, 254. https://doi.org/10.1016/j.fuel.2019.115627
  43. US EPA. (2016). Life Cycle Assessment of Cookstove Fuels in India and China, Final Report,. www.epa.gov/research
  44. Wang, J., Li, Y., Han, Y., Sun, Y., Fang, Y., Zhao, J., & Qin, Z. (2009). Coal to liquid fuels by gasification and the associated hot gas cleanup challenges. In Cuihua Xuebao / Chinese Journal of Catalysis (Vol. 30, Issue 8, pp. 770–775). Science Press. https://doi.org/10.1016/s1872-2067(08)60123-0
  45. Wu, T. W., & Chien, I. L. (2022). A novel energy-efficient process of converting CO2 to dimethyl ether with techno-economic and environmental evaluation. Chemical Engineering Research and Design, 177, 1–12. https://doi.org/10.1016/j.cherd.2021.10.013
  46. Yuliarita, E., Zulkifliani, Atmanto, M. D., Sunarjanto, D., & Lubad, A. M. (2020). Kajian Pemanfaatan Gas DME (Dimethyl Ether) atau Uji Terap pada Sektor Rumah Tangga di Wilayah Sumatera Selatan. Lembaran Publikasi Minyak Dan Gas Bumi, 54(2), 61–67
  47. Zhang, J., Smith, K. R., Ma, Y., Ye, S., Jiang, F., Qi, W., & Thorneloe (2000). Greenhouse gases and other airborne pollutants from household stoves in China: a database for emission factors. Atmospheric Environment, 34(26), 4537–4549. https://pdxscholar.library.pdx.edu/phy_fac/314

Last update:

No citation recorded.

Last update:

No citation recorded.