skip to main content

Pemanfaatan Gas Buang Turbin Gas Siklus Terbuka Dengan Sistem Organic Rankine Cycle

Magister Energi, Sekolah Pascasarjana, Universitas Diponegoro, Indonesia

Open Access Copyright (c) 2022 Jurnal Energi Baru dan Terbarukan

Citation Format:
Abstract

Gas buang Turbin Gas Siklus Terbuka (PLTG) yang masih bersuhu tinggi merupakan suatu pemborosan energi sehingga diperlukan usaha untuk memanfaatkannya karena energi adalah sumber daya yang berharga dan setiap panas buang yang berasal dari pembangkit listrik siklus terbuka, mesin-mesin atau industri harus menggunakannya secara efisien dan efektif. ORegenTM adalah siklus Rankine Organik GE yaitu suatu sistem yang didesain untuk memanfaatkan energi panas gas buang dari Turbin Gas atau dari sumber-sumber panas buangan lainnya. Sistem ORegen GE merupakan siklus panas lanjut Termodinamika dengan menggunakan fluida kerja cyclo pentane yang memanfaatkan panas buang dari Turbin Gas dan kemudian mengkonversikannya menjadi ekstra listrik sehingga 16 MW tanpa menggunakan bahan bakar ataupun air dan tidak menghasilkan tambahan emisi-emisi CO2 atau NOx. Dari beberapa tipe Turbin Gas GE dalam studi ini diperoleh efisiensi tertinggi keseluruhan dari sistem yaitu sebesar 51,5% dengan efisiensi Turbin Gas sebesar 41,1% yang diperoleh oleh Turbin Gas PGT25+ G4 pada beban 34 MW dan mendapatkan ekstra listrik dari ORegen sebesar 8,9 MW.

Fulltext View|Download
Keywords: Siklus Rankine organik;Siklus panas lanjut Termodinamika;ORegen;Siklo Pentana;Turbin Gas

Article Metrics:

  1. Ahmadi, B., Golneshan, A. A., Arasteh, H., Karimipour, A., & Bach, Q. V. (2020). Energy and exergy analysis and optimization of a gas turbine cycle coupled by a bottoming organic Rankine cycle. Journal of Thermal Analysis and Calorimetry, 141(1), 495–510. https://doi.org/10.1007/s10973-019-09088-6
  2. Bo, Z., Zhang, K., Sun, P., Lv, X., & Weng, Y. (2019). Performance analysis of cogeneration systems based on micro gas turbine (MGT), organic Rankine cycle and ejector refrigeration cycle. Frontiers in Energy, 13(1), 54–63. https://doi.org/10.1007/s11708-018-0606-7
  3. Burrato, A. (2013). ORegen TM Waste Heat Recovery: Development and Applications
  4. Chen, W., Feng, H., Chen, L., & Xia, S. (2018). Optimal Performance Characteristics of Subcritical Simple Irreversible Organic Rankine Cycle. Journal of Thermal Science, 27(6), 555–562. https://doi.org/10.1007/s11630-018-1049-5
  5. Dai, X., Shi, L., & Qian, W. (2020). Material Compatibility of Hexamethyldisiloxane as Organic Rankine Cycle Working Fluids at High Temperatures. Journal of Thermal Science, 29(1), 25–31. https://doi.org/10.1007/s11630-019-1147-z
  6. Fan, G., Gao, Y., Ayed, H., Marzouki, R., Aryanfar, Y., Jarad, F., & Guo, P. (2021). Energy and exergy and economic (3E) analysis of a two-stage organic Rankine cycle for single flash geothermal power plant exhaust exergy recovery. Case Studies in Thermal Engineering, 28. https://doi.org/10.1016/j.csite.2021.101554
  7. Fan, W., Han, Z., Li, P., & Jia, Y. (2020). Analysis of the thermodynamic performance of the organic Rankine cycle (ORC) based on the characteristic parameters of the working fluid and criterion for working fluid selection. Energy Conversion and Management, 211. https://doi.org/10.1016/j.enconman.2020.112746
  8. Feng, H., Chen, W., Chen, L., & Tang, W. (2020). Power and efficiency optimizations of an irreversible regenerative organic Rankine cycle. Energy Conversion and Management, 220. https://doi.org/10.1016/j.enconman.2020.113079
  9. Feng, Y. qiang, Wang, X., Niaz, H., Hung, T. C., He, Z. xia, Jahan Zeb, A., & Xi, H. (2020). Experimental comparison of the performance of basic and regenerative organic Rankine cycles. Energy Conversion and Management, 223. https://doi.org/10.1016/j.enconman.2020.113459
  10. Fierro, J. J., Escudero-Atehortua, A., Nieto-Londoño, C., Giraldo, M., Jouhara, H., & Wrobel, L. C. (2020). Evaluation of waste heat recovery technologies for the cement industry. International Journal of Thermofluids, 7–8. https://doi.org/10.1016/j.ijft.2020.100040
  11. Ghasemian, E., & Ehyaei, M. A. (2018). Evaluation and optimization of organic Rankine cycle (ORC) with algorithms NSGA-II, MOPSO, and MOEA for eight coolant fluids. International Journal of Energy and Environmental Engineering, 9(1), 39–57. https://doi.org/10.1007/s40095-017-0251-7
  12. Gong, X. W., Wang, X. Q., Li, Y. R., & Wu, C. M. (2015). Thermodynamic performance analysis of a coupled transcritical and subcritical organic Rankine cycle system for waste heat recovery. Journal of Mechanical Science and Technology, 29(7), 3017–3029. https://doi.org/10.1007/s12206-015-0632-x
  13. Gotovskiy, M. A., Grinman, M. I., Fomin, V. I., Aref’ev, V. K., & Grigor’ev, A. A. (2012). Use of combined steam-water and organic rankine cycles for achieving better efficiency of gas turbine units and internal combustion engines. Thermal Engineering, 59(3), 236–241. https://doi.org/10.1134/S0040601512030032
  14. Herath, H. M. D. P., Wijewardane, M. A., Ranasinghe, R. A. C. P., & Jayasekera, J. G. A. S. (2020). Working fluid selection of Organic Rankine Cycles. Energy Reports, 6, 680–686. https://doi.org/10.1016/j.egyr.2020.11.150
  15. Khater, A. M., Soliman, A., Ahmed, T. S., & Ismail, I. M. (2021). Power generation in white cement plants from waste heat recovery using steam-organic combined Rankine cycle. Case Studies in Chemical and Environmental Engineering, 4. https://doi.org/10.1016/j.cscee.2021.100138
  16. Köse, Ö., Koç, Y., & Yağlı, H. (2020). Performance improvement of the bottoming steam Rankine cycle (SRC) and organic Rankine cycle (ORC) systems for a triple combined system using gas turbine (GT) as topping cycle. Energy Conversion and Management, 211. https://doi.org/10.1016/j.enconman.2020.112745
  17. Kumar, A., & Rakshit, D. (2021). A critical review on waste heat recovery utilization with special focus on Organic Rankine Cycle applications. In Cleaner Engineering and Technology (Vol. 5). Elsevier Ltd. https://doi.org/10.1016/j.clet.2021.100292
  18. Lei, B., Zhang, C., Zhang, Y., Wu, Y., Wang, W., & Ma, C. (2021). A Theoretical Criterion for Evaluating the Thermodynamic Effectiveness of Regenerators in Organic Rankine Cycle Systems. Journal of Thermal Science, 30(6), 2027–2036. https://doi.org/10.1007/s11630-021-1521-5
  19. Li, Z., Huang, R., Lu, Y., Roskilly, A. P., & Yu, X. (2019). Analysis of a combined trilateral cycle - Organic Rankine cycle (TLC-ORC) system for waste heat recovery. Energy Procedia, 158, 1786–1791. https://doi.org/10.1016/j.egypro.2019.01.421
  20. Liao, G., E, J., Zhang, F., Chen, J., & Leng, E. (2020). Advanced exergy analysis for Organic Rankine Cycle-based layout to recover waste heat of flue gas. Applied Energy, 266. https://doi.org/10.1016/j.apenergy.2020.114891
  21. Lim, H. S., Choi, B. S., Park, M. R., Hwang, S. C., Park, J. Y., Seo, J., Bang, J. S., & Kim, B. O. (2017). Performance evaluation of two-stage turbine for the organic rankine cycle system. Journal of Mechanical Science and Technology, 31(12), 5849–5855. https://doi.org/10.1007/s12206-017-1127-8
  22. Meng, N., Li, T., Gao, X., Liu, Q., Li, X., & Gao, H. (2022). Thermodynamic and techno-economic performance comparison of two-stage series organic Rankine cycle and organic Rankine flash cycle for geothermal power generation from hot dry rock. Applied Thermal Engineering, 200. https://doi.org/10.1016/j.applthermaleng.2021.117715
  23. Moghimi, M., & Khosravian, M. (2018). Exergy optimization for a novel combination of organic Rankine cycles, Stirling cycle and direct expander turbines. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 54(6), 1827–1839. https://doi.org/10.1007/s00231-017-2270-6
  24. Nasir, M. T., Ekwonu, M. C., Esfahani, J. A., & Kim, K. C. (2021). Performance assessment and multi-objective optimization of an organic Rankine cycles and vapor compression cycle based combined cooling, heating, and power system. Sustainable Energy Technologies and Assessments, 47. https://doi.org/10.1016/j.seta.2021.101457
  25. ORegen* Waste Heat Recovery System for GE and other OEM Gas Turbines Get more from your Gas Turbines ecomagination SM. (n.d.)
  26. Organic Rankine Cycle and Steam Rankine Cycle for Waste Heat Recovery in a Cement Plant in Egypt: A Comparative Case Study. (2020). Water, Energy, Food and Environment, 1(1), 19–42. https://doi.org/10.18576/wefej/010102
  27. Oyedepo, S. O., & Fakeye, A. B. (2020). Electric power conversion of exhaust waste heat recovery from gas turbine power plant using organic Rankine cycle. International Journal of Energy and Water Resources, 4(2), 139–150. https://doi.org/10.1007/s42108-019-00055-3
  28. Qu, J., Feng, Y., Zhu, Y., Zhou, S., & Zhang, W. (2021). Design and thermodynamic analysis of a combined system including steam Rankine cycle, organic Rankine cycle, and power turbine for marine low-speed diesel engine waste heat recovery. Energy Conversion and Management, 245. https://doi.org/10.1016/j.enconman.2021.114580
  29. Rajput, R. K. (2007). ENGINEERING THERMODYNAMICS T H I R D E D I T I O N SI Units Version. (n.d.). http://boilersinfo.com/
  30. Ui-tao, W. H., Hua, W., & Zhu-min, Z. (n.d.). • ScienceDirect Optimization of Low-Temperature Exhaust Gas Waste Heat Fueled Organic Rankine Cycle. www.sciencedirect.com
  31. Wang, Z. qi, Zhou, Q. yu, Xia, X. xia, Liu, B., & Zhang, X. (2017). Performance comparison and analysis of a combined power and cooling system based on organic Rankine cycle. Journal of Central South University, 24(2), 353–359. https://doi.org/10.1007/s11771-017-3437-5
  32. Wang, Z., Zhou, N., Zhang, J., Guo, J., & Wang, X. (2012). Parametric optimization and performance comparison of organic Rankine cycle with simulated annealing algorithm. Journal of Central South University, 19(9), 2584–2590. https://doi.org/10.1007/s11771-012-1314-9
  33. Wu, S. Y., Li, C., Xiao, L., Li, Y. R., & Liu, C. (2014). The role of outlet temperature of flue gas in organic Rankine cycle considering low temperature corrosion. Journal of Mechanical Science and Technology, 28(12), 5213–5219. https://doi.org/10.1007/s12206-014-1145-8
  34. Xu, B., Rathod, D., Yebi, A., & Filipi, Z. (2020). A comparative analysis of real-time power optimization for organic Rankine cycle waste heat recovery systems. Applied Thermal Engineering, 164. https://doi.org/10.1016/j.applthermaleng.2019.114442
  35. Yang, F. bin, Yang, F. F., Li, J., Hu, S. Z., Yang, Z., & Duan, Y. Y. (2021). Analysis of the thermodynamic performance limits of the organic Rankine cycle in low and medium temperature heat source applications. Science China Technological Sciences, 64(8), 1624–1640. https://doi.org/10.1007/s11431-020-1787-6
  36. Yun, E., Park, H., Yoon, S. Y., & Kim, K. C. (2015). Dual parallel organic Rankine cycle (ORC) system for high efficiency waste heat recovery in marine application. Journal of Mechanical Science and Technology, 29(6), 2509–2515. https://doi.org/10.1007/s12206-015-0548-5
  37. Zhao, Y., Liu, G., Li, L., Yang, Q., Tang, B., & Liu, Y. (2019). Expansion devices for organic Rankine cycle (ORC) using in low temperature heat recovery: A review. In Energy Conversion and Management (Vol. 199). Elsevier Ltd. https://doi.org/10.1016/j.enconman.2019.111944
  38. Zhu, J., Kang, Z., An, Q., & Li, T. (2015). Parametric optimization of organic Rankine cycle with R245fa/R601a as working fluid. Transactions of Tianjin University, 21(1), 69–75. https://doi.org/10.1007/s12209-015-2361-8
  39. Zhu, J. ling, Bo, H. yu, Li, T. lu, Hu, K. yong, & Liu, K. tao. (2015). A thermodynamics comparison of subcritical and transcritical organic Rankine cycle system for power generation. Journal of Central South University, 22(9), 3641–3649. https://doi.org/10.1007/s11771-015-2905-z

Last update:

No citation recorded.

Last update:

No citation recorded.

slot gacor slot