skip to main content

Perencanaan PLTS Roof Top On-Grid Untuk Gedung Kantor PLTU Amurang Sebagai Upaya Mengurangi Auxiliary Power dan Memperbaiki Nilai Nett Plant Heat Rate Pembangkit

1Magister Energi, Sekolah Pascasarjana, Universitas Diponegoro, Indonesia

2Departemen Teknik Mesin, Fakultas Teknik, Universitas Diponegoro, Indonesia

Open Access Copyright (c) 2022 Jurnal Energi Baru dan Terbarukan

Citation Format:
Abstract

Pembangkit listrik adalah kumpulan dari beberapa mesin yang sumber utamanya dari listrik tergabung dalam beberapa sistem atau sub sistem untuk menjalankan proses produksi menghasilkan energi listrik. Tidak semua listrik yang di hasilkan dari Generator disalurkan ke pelanggan namun juga ada listrik yang di pakai sendiri untuk menggerakkan motor-motor listrik atau tempat-tempat lain yang memerlukan listrik yang ada di dalam area pembangkit tersebut. Saat ini kebutuhan listrik untuk gedung kantor diambilkan dari unit pembangkit PLTU Amurang sehingga membebani auxiliary power pembangkit tersebut. Perencanaan pembangunan PV sel surya roof top on grid sebagai salah satu alternatif sebagai sumber energi listrik di kantor PLTU Amurang sehingga bisa mengurangi auxiliary power pembangkit utama dan memperbaiki Nett Plant Heat Rate (NPHR).  Hasil perhitungan diperlukan 6 modul panel sel surya dengan nominal power per panel 300 Wp dan satu inverter kapasitas 2000 W dengan estimasi biaya Rp 71.500.000,-. Setelah pemasangan PLTS, terdapat perkiraan penghematan rata-rata 133 kWh setiap bulan dan nilai NPHR mengalami penurunan minimal 20,15 kCal/kWh setiap bulannya yang menandakan unit pembangkit utama semakin efisien.

Fulltext View|Download
Keywords: Solar Power Generation Electric, Energy Saving, Nett Plant Heat Rate
Funding: Universitas Diponegoro under contract Jaka Windarta

Article Metrics:

  1. A.K. Raja, Amit Prakash Srivastava, M. D. (2006). Power Plant Engineering (Vol. 148)
  2. Andrei, H., Dogaru-Ulieru, V., Chicco, G., Cepisca, C., & Spertino, F. (2007). Photovoltaic applications. Journal of Materials Processing Technology. https://doi.org/10.1016/j.jmatprotec.2006.03.043
  3. Bhadoria, V. S., Pachauri, R. K., & Tiwari, S. (2020). Investigation of Different BPD Placement Topologies for Shaded Modules in a Series-Parallel Configured PV Array. 216911–216921. https://doi.org/10.1109/ACCESS.2020.3041715
  4. Desai, A. A., & Mikkili, S. (2019). Modelling and analysis of PV configurations (alternate TCT-BL, total cross tied, series, series parallel, bridge linked and honey comb) to extract maximum power under partial shading conditions. CSEE Journal of Power and Energy Systems, PP(99). https://doi.org/10.17775/CSEEJPES.2020.00900
  5. Dogga, R., & Pathak, M. K. (2019). Recent trends in solar PV inverter topologies. Solar Energy, 183(March), 57–73. https://doi.org/10.1016/j.solener.2019.02.065
  6. EPRI. (2006). Power Plant Optimization Guidelines. 2006
  7. G.A. Rampinelli a, A. Krenzinger b, F. C. R. c a. (2014). Mathematical models for efficiency of inverters used in grid connected photovoltaic systems. ScienceDirect Renewable. https://doi.org/http://dx.doi.org/10.1016/j.rser.2014.03.047 1364-0321/&
  8. Ghosh, S., & Yadav, R. (2021). Future of photovoltaic technologies: A comprehensive review. Sustainable Energy Technologies and Assessments, 47(June), 101410. https://doi.org/10.1016/j.seta.2021.101410
  9. Ghosh, S., Yadav, V. K., Mukherjee, V., & Yadav, P. (2017). Evaluation of relative impact of aerosols on photovoltaic cells through combined Shannon’s entropy and Data Envelopment Analysis (DEA). Renewable Energy, 105, 344–353. https://doi.org/10.1016/j.renene.2016.12.062
  10. Hidayanti, F. (2020). The Effect of Monocrystalline and Polycrystalline Material Structure on Solar Cell Performance Material Structure on Solar Cell Performance. International Journal of Emerging Trends in Engineering Research, 8. https://doi.org/https://doi.org/10.30534/ijeter/2020/87872020
  11. Humaid Mohammed, Manish Kumar, R. G. (2020). Bypass diode effect on temperature distribution in crystalline silicon photovoltaic module under partial shading, Solar Energy. 208, 182–194. https://doi.org/https://doi.org/10.1016/j.solener.2020.07.087
  12. Khaligh, A., & Onar, O. C. (2017). Energy harvesting: Solar, wind, and ocean energy conversion systems. In Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems. https://doi.org/10.1201/9781439815090
  13. Leticia Toreti Scarabelot, G., & Arns Rampinelli, C. R. R. (2021). Overirradiance effect on the electrical performance of photovoltaic systems of different inverter sizing factors. Solar Energy, 225(June 2020), 561–568. https://doi.org/10.1016/j.solener.2021.07.055
  14. Ogbonnaya, C., Abeykoon, C., Nasser, A., Ume, C. S., Damo, U. M., & Turan, A. (2021). Engineering risk assessment of photovoltaic-thermal-fuel cell system using classical failure modes, effects and criticality analyses. Cleaner Environmental Systems, 2(January), 100021. https://doi.org/10.1016/j.cesys.2021.100021
  15. Omar, M. A., & Mahmoud, M. M. (2021). Improvement Approach for Matching PV-array and Inverter of Grid Connected PV Systems Verified by a Case Study. 10(4), 687–697. https://doi.org/10.14710/ijred.2021.36082
  16. Orba, Z. Č., Ć, V. K., Ć, B. P., & Ć, D. M. Ć. E. V. I. (2016). New String Reconfiguration Technique for Residential Photovoltaic System Generation Enhancement. 16(1), 19–26
  17. Patrao, I., Figueres, E., González-espín, F., & Garcerá, G. (2011). Transformerless topologies for grid-connected single-phase photovoltaic inverters. 15, 3423–3431. https://doi.org/10.1016/j.rser.2011.03.034
  18. Pattanapong Jumrusprasert, Geoff Smith, L. K. (2008). Comparing The Efficienncy Of Fixed Solar Cell Panels In A Tropical Location. Springer, Berlin, Heidelberg. https://doi.org/https://doi.org/10.1007/978-3-540-75997-3_300
  19. Ramadhani, B. (2018). Instalasi Pembangkit Listrik Tenaga Surya (Issue 31 Agustus 2018). Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH,Energising Development (EnDev) Indonesia. www.endev-indonesia.info
  20. Rodrigo, P. M., Velázquez, R., & Fernández, E. F. (2016). DC/AC conversion efficiency of grid-connected photovoltaic inverters in central Mexico. Solar Energy, 139, 650–665. https://doi.org/10.1016/j.solener.2016.10.042
  21. Syahputra, R., & Soesanti, I. (2021). Renewable energy systems based on micro-hydro and solar photovoltaic for rural areas: A case study in Yogyakarta, Indonesia. Energy Reports, 7, 472–490. https://doi.org/10.1016/j.egyr.2021.01.015
  22. Vivar, M., Skryabin, I., Everett, V., & Blakers, A. (2010). A concept for a hybrid solar water purification and photovoltaic system. Solar Energy Materials and Solar Cells, 94(10), 1772–1782. https://doi.org/10.1016/j.solmat.2010.05.045
  23. Xue, J. (2017). Photovoltaic agriculture - New opportunity for photovoltaic applications in China. Renewable and Sustainable Energy Reviews, 73(January), 1–9. https://doi.org/10.1016/j.rser.2017.01.098
  24. Zhang, C., Shen, C., Wei, S., Wang, Y., Lv, G., & Sun, C. (2020). A Review on Recent Development of Cooling Technologies for Photovoltaic Modules. Journal of Thermal Science, 29(6), 1410–1430. https://doi.org/10.1007/s11630-020-1350-y

Last update:

No citation recorded.

Last update:

No citation recorded.