skip to main content

Sulforaphane Promotes Adipocyte Thermogenesis: Molecular Insights, Anti-Obesity Potential, and Future Perspective

1Department of Nutrition Science, Faculty of Medicine, Universitas Diponegoro, Indonesia

2Department of Medical Biology and Biochemistry, Faculty of Medicine, Universitas Diponegoro, Indonesia

Received: 24 Jun 2025; Revised: 15 Sep 2025; Accepted: 25 Sep 2025; Published: 31 Dec 2025.
Open Access Copyright (c) 2025 Journal of Biomedicine and Translational Research
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Over the past five decades, the increasing incidence of obesity has sparked considerable interest in nutraceuticals as promising natural alternatives for effective weight management and metabolic health improvement. Sulforaphane (SFN), an isothiocyanate abundant in cruciferous vegetables, has gained attention for its potential in obesity management, particularly by promoting the browning of white adipose tissue (WAT) and transforming it into energy-burning fat. While its potential is significant, the underlying molecular mechanisms are complex and require a comprehensive synthesis. Therefore, this review explores sulforaphane (SFN) as a potential nutraceutical alternative by examining the scientific evidence of its anti obesity effects, focusing on its ability to activate multiple signalling pathways, including Nuclear Factor Erythroid 2-related factor 2 (Nrf2), AMP-activated protein kinase (AMPK), and sirtuin 1 (SIRT1), as well as upregulation of uncoupling protein 1 (UCP1). These are the key pathways in mitochondrial biogenesis, lipid metabolism, and thermogenesis. Additionally, SFN can mitigate oxidative stress and modulate inflammatory responses, further contributing to improved metabolic function and energy expenditure. While much of the research on SFN has focused on its effects on mature cruciferous vegetables, current research increasingly directs attention to microgreens, which contain significantly higher concentrations of bioactive compounds, including SFN. This review highlights SFN’s molecular mechanisms underlying its role in the context of obesity, specifically its effects on WAT browning, metabolic regulation, and thermogenesis. We also explored the potential of microgreen-derived SFN as a promising nutraceutical for obesity intervention and metabolic regulation, highlighting the novel bioactive chemical and biological properties of these plants.

Fulltext
Keywords: Sulforaphane; Nutraceutical; Browning of White Adipose; Thermogenesis; Obesity

Article Metrics:

  1. Piché ME, Tchernof A, Després JP. Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. Circ Res. 2020;126(11):1477–500. doi: 10.1161/CIRCRESAHA.120.316101
  2. Ahmed B, Konje JC. The epidemiology of obesity in reproduction. Best Pract Res Clin Obstet Gynaecol. 2023;89:102342. doi: 10.1016/j.bpobgyn.2023.102342
  3. Alipoor E, Hosseinzadeh-Attar MJ, Rezaei M, Jazayeri S, Chapman M. White adipose tissue browning in critical illness: A review of the evidence, mechanisms and future perspectives. Obes Rev. 2020;21(12):1–8. doi: 10.1111/obr.13085
  4. Giles GI, Nasim MJ, Ali W, Jacob C. The reactive sulfur species concept: 15 years on. Antioxidants. 2017;6(2):1–29. doi: 10.3390/antiox6020038
  5. Ruhee RT, Suzuki K. The integrative role of sulforaphane in preventing inflammation, oxidative stress and fatigue: A review of a potential protective phytochemical. Antioxidants. 2020;9(6):1–13. doi: 10.3390/antiox9060521
  6. Çakır I, Pan PL, Hadley CK, El-Gamal A, Fadel A, Elsayegh D, et al. Sulforaphane reduces obesity by reversing leptin resistance. Elife. 2022;11:1–28. doi: 10.7554/eLife.67368
  7. Masuda M, Yoshida-Shimizu R, Mori Y, Ohnishi K, Adachi Y, Sakai M, et al. Sulforaphane induces lipophagy through the activation of AMPK-mTOR-ULK1 pathway signaling in adipocytes. J Nutr Biochem. 2022;106:109017. doi: 10.1016/j.jnutbio.2022.109017
  8. Liu Y, Fu X, Chen Z, Luo T, Zhu C, Ji Y, et al. The Protective Effects of Sulforaphane on High-Fat Diet-Induced Obesity in Mice Through Browning of White Fat. Front Pharmacol. 2021;12(April):1–13. doi: 10.3389/fphar.2021.665894
  9. Zhang HQ, Chen SY, Wang AS, Yao AJ, Fu JF, Zhao JS, et al. Sulforaphane induces adipocyte browning and promotes glucose and lipid utilization. Mol Nutr Food Res. 2016;60(10):2185–97. doi: 10.1002/mnfr.201500915
  10. Lee JH, Moon MH, Jeong JK, Park YG, Lee YJ, Seol JW, et al. Sulforaphane induced adipolysis via hormone sensitive lipase activation, regulated by AMPK signaling pathway. Biochem Biophys Res Commun. 2012;426(4):492–7. doi: 10.1016/j.bbrc.2012.08.107
  11. Nagata N, Xu L, Kohno S, Ushida Y, Aoki Y, Umeda R, et al. Glucoraphanin ameliorates obesity and insulin resistance through adipose tissue browning and reduction of metabolic endotoxemia in mice. Diabetes. 2017;66(5):1222–36. doi: 10.2337/db16-0662
  12. Choi KM, Lee YS, Kim W, Kim SJ, Shin KO, Yu JY, et al. Sulforaphane attenuates obesity by inhibiting adipogenesis and activating the AMPK pathway in obese mice. J Nutr Biochem. 2014;25(2):201–7. doi: 10.1016/j.jnutbio.2013.10.007
  13. Hansen AW, Venkatachalam K V. Sulfur-Element containing metabolic pathways in human health and crosstalk with the microbiome. Biochem Biophys Reports. 2023;35(August):101529. doi: 10.1016/j.bbrep.2023.101529
  14. Kurmi K, Haigis MC. Nitrogen Metabolism in Cancer and Immunity. Trends Cell Biol. 2020;30(5):408–24. doi: 10.1016/j.tcb.2020.02.005
  15. Rai M, Singh AV, Paudel N, Kanase A, Falletta E, Kerkar P, et al. Herbal concoction Unveiled: A computational analysis of phytochemicals’ pharmacokinetic and toxicological profiles using novel approach methodologies (NAMs). Curr Res Toxicol. 2023;5(August):100118. doi: 10.1016/j.crtox.2023.100118
  16. Janczewski Ł. Sulforaphane and Its Bifunctional Analogs: Synthesis and Biological Activity. Molecules. 2022;27(5). doi: 10.3390/molecules27051750
  17. Mbaye MN, Hou Q, Basu S, Teheux F, Pucci F, Rooman M. A comprehensive computational study of amino acid interactions in membrane proteins. Sci Rep. 2019;9(1):1–14. doi: 10.1038/s41598-019-48541-2
  18. Rossi Sebastiano M, Doak BC, Backlund M, Poongavanam V, Over B, Ermondi G, et al. Impact of Dynamically Exposed Polarity on Permeability and Solubility of Chameleonic Drugs beyond the Rule of 5. J Med Chem. 2018;61(9):4189–202. doi: 10.1021/acs.jmedchem.8b00347
  19. Hermann J, DiStasio RA, Tkatchenko A. First-Principles Models for van der Waals Interactions in Molecules and Materials: Concepts, Theory, and Applications. Chem Rev. 2017;117(6):4714–58. doi: 10.1021/acs.chemrev.6b00446
  20. Datta R, Das D, Das S. Efficient lipophilicity prediction of molecules employing deep-learning models. Chemom Intell Lab Syst. 2021;213(January):104309. doi: 10.1016/j.chemolab.2021.104309
  21. Mohsin K, Alamri R, Ahmad A, Raish M, Alanazi FK, Hussain MD. Development of self-nanoemulsifying drug delivery systems for the enhancement of solubility and oral bioavailability of fenofibrate, A poorly water-soluble drug. Int J Nanomedicine. 2016;11:2829–38. doi: 10.2147/IJN.S104187
  22. Mahn A, Pérez CE, Zambrano V, Barrientos H. Maximization of Sulforaphane Content in Broccoli Sprouts by Blanching. Foods. 2022;11(13):1–9. doi: 10.3390/foods11131906
  23. Lekcharoenkul P, Tanongkankit Y, Chiewchan N, Devahastin S. Enhancement of sulforaphane content in cabbage outer leaves using hybrid drying technique and stepwise change of drying temperature. J Food Eng. 2014;122(1):56–61. doi: 10.1016/j.jfoodeng.2013.08.037
  24. Bianchi G, Picchi V, Tava A, Doria F, Walley PG, Dever L, et al. Insights into the phytochemical composition of selected genotypes of organic kale (Brassica oleracea L. var. acephala). J Food Compos Anal. 2024 Jan 1;125:105721. doi: 10.1016/J.JFCA.2023.105721
  25. Kuljarachanan T, Fu N, Chiewchan N, Devahastin S, Chen XD. Evolution of important glucosinolates in three common: Brassica vegetables during their processing into vegetable powder and in vitro gastric digestion. Food Funct. 2020;11(1):211–20. doi: 10.1039/c9fo00811j
  26. Uher A, Mezeyova I, Hegedusova A, Slosar M. Impact Of Nutrition On The Quality And Quantity Of Cauliflower Florets. Potravin Slovak J Sci. 2017;11(1):113–9. doi: 10.5219/723
  27. West LG, Meyer KA, Balch BA, Rossi FJ, Schultz MR, Haas GW. Glucoraphanin and 4-Hydroxyglucobrassicin Contents in Seeds of 59 Cultivars of Broccoli, Raab, Kohlrabi, Radish, Cauliflower, Brussels Sprouts, Kale, and Cabbage. J Agric Food Chem. 2004;52(4):916–26. doi: 10.1021/jf0307189
  28. López-Cervantes J, Tirado-Noriega LG, Sánchez-Machado DI, Campas-Baypoli ON, Cantú-Soto EU, Núñez-Gastélum JA. Biochemical composition of broccoli seeds and sprouts at different stages of seedling development. Int J Food Sci Technol. 2013;48(11):2267–75. doi: 10.1111/ijfs.12213
  29. Tříska J, Balík J, Houška M, Novotná P, Magner M, Vrchotová N, et al. Factors influencing sulforaphane content in broccoli sprouts and subsequent sulforaphane extraction. Foods. 2021;10(8):1–12. doi: 10.3390/foods10081927
  30. Bouranis JA, Wong CP, Beaver LM, Uesugi SL, Papenhausen EM, Choi J, et al. Sulforaphane Bioavailability in Healthy Subjects Fed a Single Serving of Fresh Broccoli Microgreens. Foods. 2023;12(20):1–11. doi: 10.3390/foods12203784
  31. Vanduchova A, Anzenbacher P, Anzenbacherova E. Isothiocyanate from Broccoli, Sulforaphane, and Its Properties. J Med Food. 2019;22(2):121–6. doi: 10.1089/jmf.2018.0024
  32. Li X, Wang Y, Zhao G, Liu G, Wang P, Li J. Microorganisms—An Effective Tool to Intensify the Utilization of Sulforaphane. Foods. 2022;11(23):1–17. doi: 10.3390/foods11233775
  33. Salas-Millán JÁ, Aguayo E. Bioaccessibility and unravelling of polyphenols, sulforaphane, and indoles biotransformation after in vitro gastrointestinal digestion of a novel lactofermented broccoli beverage. Food Funct. 2024;11949–60. doi: 10.1039/d4fo03528c
  34. Bo S, Fadda M, Fedele D, Pellegrini M, Ghigo E, Pellegrini N. A critical review on the role of food and nutrition in the energy balance. Nutrients. 2020;12(4):1–27. doi: 10.3390/nu12041161
  35. Bouranis J, Beaver L, Wong C, Choi J, Hamer S, Davis E, et al. Sulforaphane and Sulforaphane-Nitrile Metabolism in Humans Following Broccoli Sprout Consumption: Inter-individual Variation, Association with Gut Microbiome Composition, and Differential Bioactivity. Mol Nutr Food Res. 2023; doi: 10.1002/mnfr.202300286)
  36. Fahey JW, Wade KL, Stephenson KK, Panjwani AA, Liu H, Cornblatt G, et al. Bioavailability of sulforaphane following ingestion of glucoraphanin-rich broccoli sprout and seed extracts with active myrosinase: A pilot study of the effects of proton pump inhibitor administration. Nutrients. 2019;11(7):1–16. doi: 10.3390/nu11071489
  37. Ali Redha A, Torquati L, Bows JR, Gidley MJ, Cozzolino D. Microencapsulation of broccoli sulforaphane using whey and pea protein: in vitro dynamic gastrointestinal digestion and intestinal absorption by Caco-2-HT29-MTX-E12 cells. Food Funct. 2024;71–86. doi: 10.1039/d4fo03446e
  38. Heyde I, Begemann K, Oster H. Contributions of White and Brown Adipose Tissues to the Circadian Regulation of Energy Metabolism. Endocrinol (United States). 2021;162(3):1–14. doi: 10.1210/endocr/bqab009
  39. Heinonen S, Jokinen R, Rissanen A, Pietiläinen KH. White adipose tissue mitochondrial metabolism in health and in obesity. Obes Rev. 2020;21(2):1–23. doi: 10.1111/obr.12958
  40. Saito M, Okamatsu-Ogura Y. Thermogenic Brown Fat in Humans: Implications in Energy Homeostasis, Obesity and Metabolic Disorders. World J Mens Heal. 2023 Jul;41(3):489–507. doi: 10.5534/wjmh.220224
  41. Machado SA, Pasquarelli-do-Nascimento G, da Silva DS, Farias GR, de Oliveira Santos I, Baptista LB, et al. Browning of the white adipose tissue regulation: new insights into nutritional and metabolic relevance in health and diseases. Nutr Metab (Lond). 2022;19(1):61. doi: 10.1186/s12986-022-00694-0
  42. Scheel AK, Espelage L, Chadt A. Many Ways to Rome: Exercise, Cold Exposure and Diet—Do They All Affect BAT Activation and WAT Browning in the Same Manner? Int J Mol Sci. 2022;23(9). doi: 10.3390/ijms23094759
  43. Houghton CA, Fassett RG, Coombes JS. Sulforaphane and Other Nutrigenomic Nrf2 Activators: Can the Clinician’s Expectation Be Matched by the Reality? Oxid Med Cell Longev. 2016;2016. doi: 10.1155/2016/7857186
  44. Baird L, Yamamoto M. The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway. Mol Cell Biol. 2020;40(13). doi: 10.1128/mcb.00099-20
  45. Schneider K, Valdez J, Nguyen J, Vawter M, Galke B, Kurtz TW, et al. Increased energy expenditure, ucp1 expression, and resistance to diet-induced obesity in mice lacking nuclear factor-erythroid-2-related transcription factor-2 (nrf2). J Biol Chem. 2016;291(14):7754–66. doi: 10.1074/jbc.M115.673756
  46. Pisani DF, Barquissau V, Chambard JC, Beuzelin D, Ghandour RA, Giroud M, et al. Mitochondrial fission is associated with UCP1 activity in human brite/beige adipocytes. Mol Metab. 2018;7(November 2017):35–44. doi: 10.1016/j.molmet.2017.11.007
  47. Magro BS, Dias DPM. Brown and beige adipose tissue: New therapeutic targets for metabolic disorders. Heal Sci Rev. 2024;10(December 2023):100148. doi: 10.1016/j.hsr.2024.100148
  48. Esteras N, Dinkova-Kostova AT, Abramov AY. Nrf2 activation in the treatment of neurodegenerative diseases: a focus on its role in mitochondrial bioenergetics and function. Biol Chem. 2016;397(5):383–400. doi:doi:10.1515/hsz-2015-0295
  49. Hardie DG, Schaffer BE, Brunet A. AMPK: An Energy-Sensing Pathway with Multiple Inputs and Outputs. Trends Cell Biol. 2016;26(3):190–201. doi: 10.1016/j.tcb.2015.10.013
  50. Hardie DG. AMPK: Positive and negative regulation, and its role in whole-body energy homeostasis. Curr Opin Cell Biol. 2015;33:1–7. doi: 10.1016/j.ceb.2014.09.004
  51. Sukumaran A, Choi K, Dasgupta B. Insight on Transcriptional Regulation of the Energy Sensing AMPK and Biosynthetic mTOR Pathway Genes. Front Cell Dev Biol. 2020;8(July):1–16. doi: 10.3389/fcell.2020.00671
  52. Wang H, Liu Y, Wang D, Xu Y, Dong R, Yang Y, et al. The upstream pathway of mtor-mediated autophagy in liver diseases. Vol. 8, Cells. 2019. 1–36 p. doi: 10.3390/cells8121597
  53. Kim SJ, Tang T, Abbott M, Viscarra JA, Wang Y, Sul HS. AMPK Phosphorylates Desnutrin/ATGL and Hormone-Sensitive Lipase To Regulate Lipolysis and Fatty Acid Oxidation within Adipose Tissue. Mol Cell Biol. 2016;36(14):1961–76. doi: 10.1128/mcb.00244-16
  54. Pollard AE, Martins L, Muckett PJ, Khadayate S, Bornot A, Clausen M, et al. AMPK activation protects against diet-induced obesity through Ucp1-independent thermogenesis in subcutaneous white adipose tissue. Nat Metab. 2019;1(3):340–9. doi: 10.1038/s42255-019-0036-9
  55. Zhang F, Ai W, Hu X, Meng Y, Yuan C, Su H, et al. Phytol stimulates the browning of white adipocytes through the activation of AMP-activated protein kinase (AMPK) α in mice fed high-fat diet. Food Funct. 2018;9(4):2043–50. doi: 10.1039/c7fo01817g
  56. Ye J, Gao C, Liang Y, Hou Z, Shi Y, Wang Y. Characteristic and fate determination of adipose precursors during adipose tissue remodeling. Cell Regen. 2023;12(1):1–19. doi: 10.1186/s13619-023-00157-8
  57. Foretz M, Even PC, Viollet B. AMPK activation reduces hepatic lipid content by increasing fat oxidation in vivo. Int J Mol Sci. 2018;19(9). doi: 10.3390/ijms19092826
  58. Wang Y, Yu W, Li S, Guo D, He J, Wang Y. Acetyl-CoA Carboxylases and Diseases. Front Oncol. 2022;12(March):1–10. doi: 10.3389/fonc.2022.836058
  59. Yuan Y, Cruzat VF, Newshome P, Cheng J, Chen Y, Lu Y. Regulation of SIRT1 in aging: Roles in mitochondrial function and biogenesis. Mech Ageing Dev [Internet]. 2016;155(1):10–21. doi: 10.1016/j.mad.2016.02.003
  60. Jiang Y, Chen D, Gong Q, Xu Q, Pan D, Lu F, et al. Elucidation of SIRT-1/PGC-1α-associated mitochondrial dysfunction and autophagy in nonalcoholic fatty liver disease. Lipids Health Dis. 2021;20(1):1–12. doi: 10.1186/s12944-021-01461-5
  61. Rius-Pérez S, Torres-Cuevas I, Millán I, Ortega ÁL, Pérez S, Sandhu MA. PGC-1 α, Inflammation, and Oxidative Stress: An Integrative View in Metabolism. Oxid Med Cell Longev. 2020;2020. doi: 10.1155/2020/1452696
  62. Mao B, Ren B, Wu J, Tang X, Zhang Q, Zhao J, et al. The Protective Effect of Broccoli Seed Extract against Lipopolysaccharide-Induced Acute Liver Injury via Gut Microbiota Modulation and Sulforaphane Production in Mice. Foods. 2023;12(14). doi: 10.3390/foods12142786
  63. Hersoug LG, Møller P, Loft S. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: Implications for inflammation and obesity. Obes Rev. 2016;17(4):297–312. doi: 10.1111/obr.12370
  64. Boutagy NE, McMillan RP, Frisard MI, Hulver MW. Metabolic endotoxemia with obesity: Is it real and is it relevant? Biochimie. 2016;124:11–20. doi: 10.1016/j.biochi.2015.06.020
  65. Okla M, Wang W, Kang I, Pashaj A, Carr T, Chung S. Activation of Toll-like receptor 4 (TLR4) attenuates adaptive thermogenesis via endoplasmic reticulum stress. J Biol Chem. 2015;290(44):26476–90. doi: 10.1074/jbc.M115.677724

Last update:

No citation recorded.

Last update:

No citation recorded.