skip to main content

Sorghum Tempeh on Cholesterol Levels and Histopathology of Aorta in High-Fat Diet-Induced Rat Model

1Department of Nutrition Sciences, Universitas Diponegoro, Indonesia

2Department of Clinical Microbiology, Faculty of Medicine, Universitas Diponegoro, Indonesia

3Department of Nutrition Sciences, Faculty of Medicine, Universitas Diponegoro,, Indonesia

4 Center of Nutrition Research, Faculty of Medicine, Universitas Diponegoro, Indonesia

5 Department of Physiology, Faculty of Medicine, Universitas Diponegoro, Indonesia

6 Department of Nutrition Sciences, Faculty of Medicine, Universitas Diponegoro, Indonesia

7 Departement of Parasitology, Faculty of Medicine, Universitas Diponegoro, Indonesia

View all affiliations
Received: 5 May 2024; Accepted: 29 Aug 2024; Available online: 30 Aug 2024; Published: 30 Aug 2024.
Open Access Copyright (c) 2024 Journal of Biomedicine and Translational Research
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Background: Elevated cholesterol levels are associated with hypercholesterolemia, the primary cause of death and lost productivity, and a significant risk factor for the onset of cardiovascular disease. Sorghum is known for its high bioactive components and phenolic compounds, flavonoids, β-glucans, and dietary fiber, which act as anti-cholesterol properties.

Objective: This study aimed to analyze the impact of sorghum tempeh on cholesterol levels and histopathology of aorta in rats fed a high-fat diet.

Methods: A total of 24 male 8-weeks-old Sprague Dawley rats were randomly assigned to four groups: standard diet group (SD), high-fat diet control group (FD), rats fed high-fat diet + low dose of sorghum tempeh (T1), and high-fat diet + high dose of sorghum tempeh (T2). Measurements of cholesterol levels were determined using the total cholesterol ELISA method. Histopathology of aorta analysis was carried out after four weeks of intervention of the four treatment groups using Hematoxylin-Eosin staining.

Results: The average total cholesterol levels post-intervention in the SD, FD, T1, and T2 were 89.986±2.089, 220.365±3.847, 121.161±4.111, and 97.836±2.504 mg/dL, respectively. The results showed that the total cholesterol level significantly decreased (p<0.05) after giving a formula of sorghum tempeh with doses of 0.75 g and 1.50 g per 200 g body weight of rats for four continuous weeks. Histopathology of the aorta in the FD and T2 groups showed a significant difference compared to the SD group. The result which was closest to the SD group was the T1 group.

Conclusion: Sorghum tempeh is a high-fiber and antioxidant source that can control hypercholesterolemia by lowering serum total cholesterol. It is also possible to improve histopathology but not yet able to approach normal conditions. The administration of sorghum tempeh with a low dose is sufficient, and further research is still required to determine the effect of sorghum tempeh on aorta histopathology.

Note: This article has supplementary file(s).

Fulltext View|Download |  Cover Letter
Cover letter
Subject
Type Cover Letter
  Download (152KB)    Indexing metadata
 Research Instrument
Ethical clearance
Subject
Type Research Instrument
  Download (221KB)    Indexing metadata
Keywords: sorghum tempeh; cholesterol; high-fat diet; aorta histopathology
Funding: Universitas Diponegoro under contract 233-10/UN7.6.1/PP/2021

Article Metrics:

  1. Tsao CW, Aday AW, Almarzooq ZI, et al. Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association. Circulation. 2022;145(8). doi: 10.1161/CIR.0000000000001052
  2. Wang HH, Garruti G, Liu M, Portincasa P, Wang DQH. Cholesterol and Lipoprotein Metabolism and Atherosclerosis: Recent Advances in Reverse Cholesterol Transport. Annals of Hepatology. 2017;16:S27-S42. doi: 10.5604/01.3001.0010.5495
  3. Xu J, Wang W, Zhao Y. Phenolic Compounds in Whole Grain Sorghum and Their Health Benefits. Foods. 2021;10(8):1921. doi: 10.3390/foods10081921
  4. Ham YM, Song HS, Kwon JE, et al. Effects of fermented Sorghum bicolor L. Moench extract on inflammation and thickness in a vascular cell and atherosclerotic mice model. J Nat Med. 2019;73(1):34-46. doi: 10.1007/s11418-018-1231-9
  5. Moraes ÉA, Marineli R da S, Lenquiste SA, et al. Sorghum flour fractions: Correlations among polysaccharides, phenolic compounds, antioxidant activity and glycemic index. Food Chemistry. 2015;180:116-123. doi: 10.1016/j.foodchem.2015.02.023
  6. Murtini EDS, Sutrisno A, Radite AG. Karakteristik Kandungan Kimia dan Daya Cerna Tempe Sorgum Coklat (Sorghum bicolor) [Characteristics of Chemical Content and Digestibility of Brown Sorghum Tempeh]. J Teknol Industri Pangan. 2011;22(2):150. https://journal.ipb.ac.id/index.php/jtip/article/view/4270
  7. Shen Y, Song X, Chen Y, et al. Effects of sorghum, purple rice, and rhubarb rice on lipids status and antioxidant capacity in mice fed a high-fat diet. Journal of Functional Foods. 2017;39:103-111. doi: 10.1016/j.jff.2017.10.017
  8. de Morais Cardoso L, Pinheiro SS, Martino HSD, Pinheiro-Sant’Ana HM. Sorghum ( Sorghum bicolor L.): Nutrients, bioactive compounds, and potential impact on human health. Critical Reviews in Food Science and Nutrition. 2017;57(2):372-390. doi: 10.1080/10408398.2014.887057
  9. Khoirun Nisa A, Afifah DN, Djamiatun K, Syauqy A. The effect of Sorghum Tempeh (Sorghum bicolor L. Moench) on low-density lipoprotein (LDL) and malondialdehyde (MDA) levels in atherogenic diet-induced rats. Potr S J F Sci. 2021;15:662-671. doi: 10.5219/1589
  10. Setyowati D, Muna AN, Septiyani A, et al. Sorghum flour’s effect on improving plasma lipid profile and atherogenic index in diabetic rats. Aceh Nutri J. 2023;8(2):186. doi: 10.30867/action.v8i2.735
  11. Forood A, Malekpour-Afshar R, Mahdavi A. Serum level of plasminogen activator inhibitor type-1 in addicted patients with coronary artery disease. Addict Health. 2014;6(3-4):119-126. PMID: 25984279 PMCID: PMC4354217
  12. Harefa K, Sulastri D, Nasrul E, Ilyas S. Atherosclerotic Biomarkers (Interleukin-6 and CD40) and Tunica Intima Thickness in Obese Rats after the Administration of Plectranthus amboinicus (Lour.) Spreng Ethanol Extract. Open Access Maced J Med Sci. 2020;8(A):852-857. doi: 10.3889/oamjms.2020.4349
  13. Sarihati IGAD, Suastika K, Wita IW, Astawa INM, Adi AAAM. Atherosclerosis towards rat relating with high cholesterol feed. irjeis. 2017;3(2):150-156. https://sloap.org/journals/index.php/irjeis/article/view/542
  14. Bennani-Kabchi N, Kehel L, El Bouayadi F, et al. New model of atherosclerosis in insulin resistant sand rats: hypercholesterolemia combined with D2 vitamin. Atherosclerosis. 2000;150(1):55-61. doi: 10.1016/S0021-9150(99)00365-2
  15. Li Z, Zhao X, Zhang X, Liu H. Bioactive Compounds and Biological Activities of Sorghum Grains. Foods. 2021;10(11):2868. doi: 10.3390/foods10112868
  16. Londoño-Hernandez, L, Bolívar G, Ramírez T. C. Effect of solid state fermentation with Rhizopus oryzae on biochemical and structural characteristics of sorghum (Sorghum bicolor (L.) Moench). IJFFT. 2018;8(1). doi: 10.30954/2277-9396.01.2018.4
  17. Salazar-López NJ, González-Aguilar GA, Rouzaud-Sández O, Loarca-Piña G, Gorinstein S, Robles-Sánchez M. Sorghum bran supplementation ameliorates dyslipidemia, glucose dysregulation, inflammation and stress oxidative induced by a high-fat diet in rats. CyTA - Journal of Food. 2020;18(1):20-30. doi: 10.1080/19476337.2019.1702105
  18. Mo Y nan, Cheng F, Yang Z, et al. Antioxidant Activity and the Potential Mechanism of the Fruit From Ailanthus altissima Swingle. Front Vet Sci. 2021;8:784898. doi: 10.3389/fvets.2021.784898
  19. Soliman GA. Dietary Fiber, Atherosclerosis, and Cardiovascular Disease. Nutrients. 2019;11(5):1155. doi: 10.3390/nu11051155
  20. Gui Y, Zheng H, Cao RY. Foam Cells in Atherosclerosis: Novel Insights Into Its Origins, Consequences, and Molecular Mechanisms. Front Cardiovasc Med. 2022;9:845942. doi: 10.3389/fcvm.2022.845942
  21. Volobueva A, Zhang D, Grechko AV, Orekhov AN. Foam cell formation and cholesterol trafficking and metabolism disturbances in atherosclerosis. Cor Vasa. 2019;61(1):48-55. doi: 10.1016/j.crvasa.2018.06.006
  22. Murwani S, Ali M, Muliartha K. DIET ATEROGENIK PADA TIKUS PUTIH (Rattus novergicus strain Wistar) SEBAGAI MODEL HEWAN ATEROSKLEROSIS. JKB. 2013;22(1):6-9. doi: 10.21776/ub.jkb.2006.022.01.2
  23. Javadifar A, Rastgoo S, Banach M, Jamialahmadi T, Johnston TP, Sahebkar A. Foam Cells as Therapeutic Targets in Atherosclerosis with a Focus on the Regulatory Roles of Non-Coding RNAs. IJMS. 2021;22(5):2529. doi: 10.3390/ijms22052529
  24. Yu XH, Fu YC, Zhang DW, Yin K, Tang CK. Foam cells in atherosclerosis. Clinica Chimica Acta. 2013;424:245-252. doi: 10.1016/j.cca.2013.06.006
  25. Maguire EM, Pearce SWA, Xiao Q. Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease. Vascular Pharmacology. 2019;112:54-71. doi: 10.1016/j.vph.2018.08.002
  26. Puato M, Faggin E, Rattazzi M, et al. Atorvastatin Reduces Macrophage Accumulation in Atherosclerotic Plaques: A Comparison of a Nonstatin-Based Regimen in Patients Undergoing Carotid Endarterectomy. Stroke. 2010;41(6):1163-1168. doi: 10.1161/STROKEAHA.110.580811

Last update:

No citation recorded.

Last update:

No citation recorded.