skip to main content

Long-Term Effects of Low-Dose Chlorpyrifos Exposure on Serum Albumin Levels in Male Wistar Rats

1Department of Pharmacology, Faculty of Medicine, Universitas Jember, Indonesia

2Faculty of Medicine, Universitas Jember, Indonesia

3Department of Forensic and Medicolegal, Faculty of Medicine, Universitas Jember, Indonesia

Received: 12 Mar 2024; Accepted: 12 Oct 2024; Available online: 31 Dec 2024; Published: 10 Dec 2024.
Open Access Copyright (c) 2024 Journal of Biomedicine and Translational Research
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Background: Chlorpyrifos is one of the organophosphate pesticide types frequently utilized as a pest control agent in Indonesia. Despite its effectiveness in combating pests, the residue levels of chlorpyrifos in the environment and plants have raised serious concerns. Long-term accumulation of chlorpyrifos in the body can lead to organ damage, particularly in the liver and kidneys, which may decrease serum albumin levels.

Objective: To investigate the impact of low-dose chlorpyrifos exposure over time on serum albumin levels in Wistar rats.

Methods: Thirty male Wistar rats were divided into five groups: the normal control group (Kn) received normal saline solution (+5% Tween 20) orally for 56 days, while the treatment groups (K1, K2, K3, and K4) were administered chlorpyrifos at a dose of 5 mg/kg body weight for 7 days (acute), 14 days (subacute), 28 days (subchronic), and 56 days (subchronic) orally. Serum albumin levels were measured using the dye-binding method with a spectrophotometer.

Results: The measurement results indicate that the normal control group (Kn) had the highest serum albumin levels (4.326±0.519 g/dL). Serum albumin levels decreased in the groups treated with chlorpyrifos. The longer the chlorpyrifos exposure, the lower the serum albumin levels. The lowest serum albumin levels were found in group K4 with chlorpyrifos exposure for 56 days (2.826±0.358 g/dL). Statistical analysis using One-way ANOVA and Post Hoc LSD tests showed significant differences (p<0.05) between all treatment groups (K1, K2, K3, and K4) and the control group (Kn).

Conclusion: This study shows that administering low-dose chlorpyrifos over a period of 7 to 56 days has a significant effect in reducing serum albumin levels in Wistar rats. The clinical implications of this decrease in serum albumin levels need to be considered in the context of exposure to organophosphate pesticide residues in humans.

Note: This article has supplementary file(s).

Fulltext View|Download |  common.other
Long-Term Effects of Low-Dose Chlorpyrifos Exposure on Serum Albumin Levels in Male Wistar Rats
Subject
Type Other
  Download (50KB)    Indexing metadata
Keywords: Organophosphates; hepatic toxicity; proteins; pesticide residues

Article Metrics:

  1. Thakur, M., Medintz, I. L., & Walper, S. A. (2019). Enzymatic Bioremediation of Organophosphate Compounds—Progress and Remaining Challenges. In Frontiers in Bioengineering and Biotechnology (Vol. 7). DOI: 10.3389/fbioe.2019.00289
  2. Supriyanto, S., Nurhidayanti, N., & Fadillah Pratama, H. (2021). Dampak Cemaran Residu Klorpirifos Terhadap Penurunan Kualitas Lingkungan pada Lahan Pertanian. Jurnal Tekno Insentif, 15(1). DOI: 10.36787/jti.v15i1.395
  3. Liem, J. F., Mansyur, M., Soemarko, D. S., Kekalih, A., Subekti, I., Suyatna, F. D., Suryandari, D. A., Malik, S. G., & Pangaribuan, B. (2021). Cumulative exposure characteristics of vegetable farmers exposed to Chlorpyrifos in Central Java – Indonesia; a cross-sectional study. BMC Public Health, 21(1), 1–9. DOI: 10.1186/s12889-021-11161-5
  4. Wołejko E, Łozowicka B, Jabłońska-Trypuć A, Pietruszyńska M, Wydro U. Chlorpyrifos Occurrence and Toxicological Risk Assessment: A Review. Int J Environ Res Public Health. 2022 Sep 26;19(19):12209
  5. Kaur, M. (2017). Oxidative Stress Response in Liver, Kidney and Gills of Ctenopharyngodon Idellus (Cuvier & Valenciennes) Exposed To Chlorpyrifos. MOJ Biology and Medicine, 1(4), 103–112. DOI: doi.org/10.15406/mojbm.2017.01.00021
  6. Zhang, Y., Jia, Q., Hu, C., Han, M., Guo, Q., Li, S., Bo, C., Zhang, Y., Qi, X., Sai, L., & Peng, C. (2021b). Effects of chlorpyrifos exposure on liver inflammation and intestinal flora structure in mice. Toxicology Research, 10(1), 141–149. DOI: doi.org/10.1093/toxres/tfaa108
  7. Deng, Y., Zhang, Y., Lu, Y., Zhao, Y., & Ren, H. (2016). Hepatotoxicity and nephrotoxicity induced by the chlorpyrifos and chlorpyrifos-methyl metabolite, 3,5,6-trichloro-2-pyridinol, in orally exposed mice. Science of the Total Environment, 544, 507–514. DOI: doi.org/10.1016/j.scitotenv.2015.11.162
  8. Benzing, T., & Salant, D. (2021). Insights into Glomerular Filtration and Albuminuria. New England Journal of Medicine, 384(15), 1437–1446. https://doi.org/10.1056/nejmra1808786
  9. Soeters, P. B., Wolfe, R. R., & Shenkin, A. (2019). Hypoalbuminemia: Pathogenesis and Clinical Significance. In Journal of Parenteral and Enteral Nutrition (Vol. 43, Issue 2). DOI: 10.1002/jpen.1451
  10. Lantigua, D., Nguyen, M. A., Wu, X., Suvarnapathaki, S., Kwon, S., Gavin, W., & Camci-Unal, G. (2020). Synthesis and characterization of photocrosslinkable albumin-based hydrogels for biomedical applications. Soft Matter, 16(40), 9242–9252. DOI: 10.1039/d0sm00977f
  11. Noh, E., Moon, J. M., Chun, B. J., Cho, Y. S., Ryu, S. J., & Kim, D. (2020). The clinical role of serum albumin in Organophospate poisoning. Basic and Clinical Pharmacology and Toxicology, 128(4). DOI: 10.1111/bcpt.13546
  12. Zhang, Y., Jia, Q., Hu, C., Han, M., Guo, Q., Li, S., Bo, C., Zhang, Y., Qi, X., Sai, L., & Peng, C. (2021a). Effects of chlorpyrifos exposure on liver inflammation and intestinal flora structure in mice. Toxicology Research, 10(1), 141–149. DOI: 10.1093/toxres/tfaa108
  13. Pyzik, M., Rath, T., Kuo, T. T., Win, S., Baker, K., Hubbard, J. J., Grenhaa, R., Gandhi, A., Krämer, T. D., Mezo, A. R., Taylor, Z. S., McDonnell, K., Nienaber, V., Andersen, J. T., Mizoguchi, A., Blumberg, L., Purohit, S., Jones, S. D., Christianson, G., … Blumberg, R. S. (2017). Hepatic FcRn regulates albumin homeostasis and susceptibility to liver injury. Proceedings of the National Academy of Sciences of the United States of America, 114(14). DOI: 10.1073/pnas.1618291114
  14. Noh, E., Moon, J. M., Chun, B. J., Cho, Y. S., Ryu, S. J., & Kim, D. (2020). The clinical role of serum albumin in Organophospate poisoning. Basic and Clinical Pharmacology and Toxicology, 128(4). DOI: 10.1111/bcpt.13546
  15. Han, C., Sheng, J., Pei, H., Sheng, Y., Wang, J., Zhou, X., Li, W., Cao, C., & Yang, Y. (2023). Environmental toxin chlorpyrifos induces liver injury by activating P53-mediated ferroptosis via GSDMD-mtROS. Ecotoxicology and Environmental Safety, 257(February), 114938. DOI: 10.1016/j.ecoenv.2023.114938
  16. Su, L., Zhang, J., Gomez, H., Kellum, J. A., & Peng, Z. (2023). Mitochondria ROS and mitophagy in acute kidney injury. Autophagy, 19(2), 401–414. DOI: 10.1080/15548627.2022.2084862
  17. Ismail, A. A., Hendy, O., Rasoul, G. A., Olson, J. R., Bonner, M. R., & Rohlman, D. S. (2021). Acute and cumulative effects of repeated exposure to chlorpyrifos on the liver and kidney function among egyptian adolescents. Toxics, 9(6). DOI: 10.3390/toxics9060137
  18. Naime, A. A., Lopes, M. W., Colle, D., Dafré, A. L., Suñol, C., da Rocha, J. B. T., Aschner, M., Leal, R. B., & Farina, M. (2020). Glutathione in Chlorpyrifos-and Chlorpyrifos-Oxon-Induced Toxicity: a Comparative Study Focused on Non-cholinergic Toxicity in HT22 Cells. Neurotoxicity Research, 38(3), 603–610. DOI: 10.1007/S12640-020-00254-5
  19. Aung, S., Talib, A. N., Nz, A., & Z, M. Z. (2023). Mechanism of Chlorpyrifos Induced Chronic Nephrotoxicity Mechanism of Chlorpyrifos Induced Chronic Nephrotoxicity. October 2022. DOI: 10.31436/imjm.v21i4.2023
  20. Deng, Y., Zhang, Y., Lu, Y., Zhao, Y., & Ren, H. (2016). Hepatotoxicity and nephrotoxicity induced by the chlorpyrifos and chlorpyrifos-methyl metabolite, 3,5,6-trichloro-2-pyridinol, in orally exposed mice. Science of the Total Environment, 544, 507–514. DOI: org/10.1016/j.scitotenv.2015.11.162
  21. Benzing, T., & Salant, D. (2021). Insights into Glomerular Filtration and Albuminuria. New England Journal of Medicine, 384(15), 1437–1446. DOI: 10.1056/nejmra1808786
  22. Kopp, J. B., Anders, H. J., Susztak, K., Podestà, M. A., Remuzzi, G., Hildebrandt, F., & Romagnani, P. (2020). Podocytopathies. Nature Reviews Disease Primers, 6(1). DOI: 10.1038/s41572-020-0196-7
  23. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev. 2017;2017. DOI: 10.1155/2017/8416763

Last update:

No citation recorded.

Last update:

No citation recorded.