skip to main content

The effect of fibre intervention on serum and faecal short-chain fatty acids in human with overweight or obesity: a systematic review of human intervention studies

1Faculty of Medicine, Universitas Diponegoro, Indonesia

2Faculty of Medicine Diponegoro University, Indonesia

3Faculty of Engineering, Universitas Diponegoro, Indonesia

Received: 21 Mar 2022; Revised: 26 Apr 2022; Accepted: 28 Apr 2022; Available online: 28 Apr 2022; Published: 28 Apr 2022.
Open Access Copyright (c) 2022 Journal of Biomedicine and Translational Research
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:

Overweight/ obesity is associated with cardiovascular diseases, which both contribute to the severity of coronavirus disease 2019 (COVID-19). Nutritional interventions focusing on dietary fibre and prebiotics interventions have been implemented. Fibre has been suggested to modulate gut-derived metabolites short-chain fatty acid (SCFA). We conducted a systematic review on fibre (including prebiotics) interventions to depict its effect on SCFA from faecal and blood using standard methodologies. PubMed, Cochrane, Embase, CINAHL, and Scopus databases were systematically searched to yield peer-reviewed articles published until 31 December 2021. We included 17 articles describing fibre (including prebiotics) intervention in adult individuals with overweight/obesity. These interventions were broadly described into 3 groups: (i) fibre type food items (n = 8); (ii) fibre supplementations (i.e. prebiotics) (n = 8); (iii) prebiotic supplementation combined with CRD (n = 1). Fibre type food items intervention mostly affected the changes of acetate in faecal, whilst propionate mostly changed in the blood. Interestingly, intervention with fibre supplementation affects more the increase of faecal and blood acetate. Furthermore, fibre intervention might have an impact on the gut microbiota. Nevertheless, more well-controlled human studies are needed, with a more personalized approach.

Fulltext View|Download
Keywords: serum SCFA; faecal SCFA; fibre; gut microbiota; obesity
Funding: Faculty of Medicine

Article Metrics:

  1. Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol [Internet]. 2019;15(5):288–98. Available from:
  2. OECD. The Heavy Burden of Obesity: The Economics of Prevention, OECD Health Policy Studies. Vol. 2021. Paris: OECD Publishing; 2019
  3. Hill JO, Wyatt HR, Peters JC. Energy balance and obesity. Circulation [Internet]. 2012;126(1):126–32. Available from:
  4. Burton-Freeman B. Dietary Fibre and Energy Regulation. J Nutr [Internet]. 2000;130(2):272S-275S. Available from:
  5. Heinonen I, Helajärvi H, Pahkala K, Heinonen OJ, Hirvensalo M, Pälve K, et al. Sedentary behaviours and obesity in adults: the Cardiovascular Risk in Young Finns Study. BMJ Open [Internet]. 2013;3(6):e002901. Available from:
  6. Lynch S V, Pedersen O. The Human Intestinal Microbiome in Health and Disease. N Engl J Med [Internet]. 2016;375(24):2369–79. Available from:
  7. Battista F, Ermolao A, van Baak MA, Beaulieu K, Blundell JE, Busetto L, et al. Effect of exercise on cardiometabolic health of adults with overweight or obesity: Focus on blood pressure, insulin resistance, and intrahepatic fat—A systematic review and meta-analysis. Obes Rev. 2021;22(S4):1–15
  8. Zabatiero J, Ng L, Clayton R, Middlemiss S, Kang K, Harrold M, et al. Effectiveness of interventions aiming at reducing sedentary behaviour in a non-surgical population with overweight or obesity: A systematic review and meta-analysis. Obes Res Clin Pract [Internet]. 2019;13(2):115–28. Available from:
  9. Bellicha A, van Baak MA, Battista F, Beaulieu K, Blundell JE, Busetto L, et al. Effect of exercise training on weight loss, body composition changes, and weight maintenance in adults with overweight or obesity: An overview of 12 systematic reviews and 149 studies. Obes Rev [Internet]. 2021;22(S4):e13256. Available from:
  10. Stanhope KL, Goran MI, Bosy-Westphal A, King JC, Schmidt LA, Schwarz JM, et al. Pathways and mechanisms linking dietary components to cardiometabolic disease: thinking beyond calories. Obes Rev [Internet]. 2018;19(9):1205–35. Available from:
  11. Miketinas DC, Bray GA, Beyl RA, Ryan DH, Sacks FM, Champagne CM. Fibre Intake Predicts Weight Loss and Dietary Adherence in Adults Consuming Calorie-Restricted Diets: The POUNDS Lost (Preventing Overweight Using Novel Dietary Strategies) Study. J Nutr [Internet]. 2019;149(10):1742–8. Available from:
  12. Lattimer JM, Haub MD. Effects of dietary fibre and its components on metabolic health. Nutrients [Internet]. 2010/12/15. 2010;2(12):1266–89. Available from:
  13. Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol. 2015/08/12. 2015;11(10):577–91
  14. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The Role of Short-Chain Fatty Acids in Health and Disease. In: Alt FW, editor. Advances in Immunology Volume 121 [Internet]. 1st ed. Elsevier Inc.; 2014. p. 91–119. Available from:
  15. den Besten G, Bleeker A, Gerding A, Eunen K Van, Havinga R, Dijk TH Van, et al. Short-Chain Fatty Acids Protect Against High-Fat Diet – Induced Obesity via a PPAR g -Dependent Switch From Lipogenesis to Fat Oxidation. Diabetes. 2015;64(7):2398–408
  16. Lu Y, Fan C, Li P, Lu Y, Chang X, Qi K. Short Chain Fatty Acids Prevent High-fat-diet-induced Obesity in Mice by Regulating G Protein-coupled Receptors and Gut Microbiota. Sci Rep [Internet]. 2016;6(1):37589. Available from:
  17. van der Beek CM, Canfora EE, Kip AM, Gorissen SHM, Olde Damink SWM, van Eijk HM, et al. The prebiotic inulin improves substrate metabolism and promotes short-chain fatty acid production in overweight to obese men. Metabolism [Internet]. 2018;87:25–35. Available from:
  18. Mayengbam S, Lambert JE, Parnell JA, Tunnicliffe JM, Nicolucci AC, Han J, et al. Impact of dietary fibre supplementation on modulating microbiota–host–metabolic axes in obesity. J Nutr Biochem [Internet]. 2019;64:228–36. Available from:
  19. Nguyen NK, Deehan EC, Zhang Z, Jin M, Baskota N, Perez-Munoz ME, et al. Gut microbiota modulation with long-chain corn bran arabinoxylan in adults with overweight and obesity is linked to an individualized temporal increase in fecal propionate. Microbiome [Internet]. 2020;8(1). Available from:
  20. Holscher HD. Dietary fibre and prebiotics and the gastrointestinal microbiota. Gut Microbes [Internet]. 2017/02/06. 2017;8(2):172–84. Available from:
  21. Dhingra D, Michael M, Rajput H, Patil RT. Dietary fibre in foods: a review. J Food Sci Technol. 2012;49(June):255–66
  22. Slavin J. Fibre and prebiotics: mechanisms and health benefits. Nutrients. 2013/04/24. 2013;5(4):1417–35
  23. Threapleton DE, Greenwood DC, Evans CEL, Cleghorn CL, Nykjaer C, Woodhead C, et al. Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis. BMJ Br Med J [Internet]. 2013;347:f6879. Available from:
  24. Bozzetto L, Costabile G, Della Pepa G, Ciciola P, Vetrani C, Vitale M, et al. Dietary Fibre as a Unifying Remedy for the Whole Spectrum of Obesity-Associated Cardiovascular Risk. Nutrients [Internet]. 2018;10(7):943. Available from:
  25. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Plos Med. 2009;21(6(7)):e1000097
  26. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Bmj. 2021/03/31. 2021;372:n71
  27. Jamar G, Santamarina AB, Casagrande BP, Estadella D, de Rosso VV, Wagner R, et al. Prebiotic potencial of juçara berry on changes in gut bacteria and acetate of individuals with obesity. Eur J Nutr [Internet]. 2020;59(8):3767–78. Available from:
  28. Vitale M, Giacco R, Laiola M, Della Pepa G, Luongo D, Mangione A, et al. Acute and chronic improvement in postprandial glucose metabolism by a diet resembling the traditional Mediterranean dietary pattern: Can SCFAs play a role? Clin Nutr [Internet]. 2021;40(2):428–37. Available from:
  29. Neyrinck AM, Rodriguez J, Zhang Z, Seethaler B, Sánchez CR, Roumain M, et al. Prebiotic dietary fibre intervention improves fecal markers related to inflammation in obese patients: results from the Food4Gut randomized placebo-controlled trial. Eur J Nutr [Internet]. 2021;60(6):3159–70. Available from:
  30. Machado AM, da Silva NBM, de Freitas RMP, de Freitas MBD, Chaves JBP, Oliveira LL, et al. Effects of yacon flour associated with an energy restricted diet on intestinal permeability, fecal short chain fatty acids, oxidative stress and inflammation markers levels in adults with obesity or overweight: a randomized, double blind, placebo controll. Arch Endocrinol Metab. 2021/05/26. 2021;64(5):597–607
  31. Benítez-Páez A, Hess AL, Krautbauer S, Liebisch G, Christensen L, Hjorth MF, et al. Sex, Food, and the Gut Microbiota: Disparate Response to Caloric Restriction Diet with Fibre Supplementation in Women and Men. Mol Nutr Food Res [Internet]. 2021;65(8):2000996. Available from:
  32. Hughes RL, Horn WH, Finnegan P, Newman JW, Marco ML, Keim NL, et al. Resistant Starch Type 2 from Wheat Reduces Postprandial Glycemic Response with Concurrent Alterations in Gut Microbiota Composition. Nutrients. 2021 Feb;13(2)
  33. Deroover L, Vázquez-Castellanos JF, Vandermeulen G, Luypaerts A, Raes J, Courtin CM, et al. Wheat bran with reduced particle size increases serum SCFAs in obese subjects without improving health parameters compared with a maltodextrin placebo. Am J Clin Nutr. 2021;114(4):1328–41
  34. Bridges SR, Anderson JW, Deakins DA, Dillon DW, Wood CL. Oat bran increases serum acetate of hypercholesterolemic men. Am J Clin Nutr. 1992/08/01. 1992;56(2):455–9
  35. Noakes M, Clifton PM, Nestel PJ, Le Leu R, McIntosh G. Effect of high-amylose starch and oat bran on metabolic variables and bowel function in subjects with hypertriglyceridemia. Am J Clin Nutr. 1996;64(6):944–51
  36. Causey JL, Feirtag JM, Gallaher DD, Tungland BC, Slavin JL. Effects of dietary inulin on serum lipids, blood glucose and the gastrointestinal environment in hypercholesterolemic men. Nutr Res [Internet]. 2000;20(2):191‐201. Available from:
  37. Salazar N, Dewulf EM, Neyrinck AM, Bindels LB, Cani PD, Mahillon J, et al. Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clin Nutr. 2015;34(3):501–7
  38. Vetrani C, Costabile G, Luongo D, Naviglio D, Rivellese AA, Riccardi G, et al. Effects of whole-grain cereal foods on plasma short chain fatty acid concentrations in individuals with the metabolic syndrome. Nutrition [Internet]. 2016;32(2):217–21. Available from:
  39. Canfora EE, van der Beek CM, Hermes GDA, Goossens GH, Jocken JWE, Holst JJ, et al. Supplementation of Diet With Galacto-oligosaccharides Increases Bifidobacteria, but Not Insulin Sensitivity, in Obese Prediabetic Individuals. Gastroenterology [Internet]. 2017;153(1):87-97.e3. Available from:
  40. Chambers ES, Byrne CS, Rugyendo A, Morrison DJ, Preston T, Tedford C, et al. The effects of dietary supplementation with inulin and inulin-propionate ester on hepatic steatosis in adults with non-alcoholic fatty liver disease. Diabetes Obes Metab. 2019 Feb;21(2):372–6
  41. Thompson S V., Bailey MA, Taylor AM, Kaczmarek JL, Mysonhimer AR, Edwards CG, et al. Avocado Consumption Alters Gastrointestinal Bacteria Abundance and Microbial Metabolite Concentrations among Adults with Overweight or Obesity: A Randomized Controlled Trial. J Nutr. 2020;151(4):753–62
  42. Wang M, Wichienchot S, He X, Fu X, Huang Q, Zhang B. In vitro colonic fermentation of dietary fibres: Fermentation rate, short-chain fatty acid production and changes in microbiota. Trends Food Sci Technol [Internet]. 2019;88:1–9. Available from:
  43. Benítez-Páez A, Hess AL, Krautbauer S, Liebisch G, Christensen L, Hjorth MF, et al. Sex, Food, and the Gut Microbiota: Disparate Response to Caloric Restriction Diet with Fibre Supplementation in Women and Men. Mol Nutr Food Res. 2021;65(8):1–13
  44. Cani PD, Van Hul M, Lefort C, Depommier C, Rastelli M, Everard A. Microbial regulation of organismal energy homeostasis. Nat Metab [Internet]. 2019;1(1):34–46. Available from:
  45. Benítez-Páez A, Gómez Del Pulgar EM, Kjølbæk L, Brahe LK, Astrup A, Larsen L, et al. Impact of dietary fibre and fat on gut microbiota re-modeling and metabolic health. Trends Food Sci Technol [Internet]. 2016;57:201–12. Available from:
  46. Reynolds A, Mann J, Cummings J, Winter N, Mete E, Te Morenga L. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet. 2019/01/15. 2019;393(10170):434–45
  47. Merra G, Noce A, Marrone G, Cintoni M, Tarsitano MG, Capacci A, et al. Influence of Mediterranean Diet on Human Gut Microbiota. Nutrients. 2020;13(1):7
  48. Van Hul M, Cani PD. Targeting Carbohydrates and Polyphenols for a Healthy Microbiome and Healthy Weight. Curr Nutr Rep. 2019;8(4):307–16
  49. Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol [Internet]. 2015;11(10):577–91. Available from:
  50. Poeker SA, Geirnaert A, Berchtold L, Greppi A, Krych L, Steinert RE, et al. Understanding the prebiotic potential of different dietary fibres using an in vitro continuous adult fermentation model (PolyFermS). Sci Rep. 2018 Mar;8(1):4318
  51. Blaak EE, Canfora EE, Theis S, Frost G, Groen AK, Mithieux G, et al. Short chain fatty acids in human gut and metabolic health. Benef Microbes. 2020/09/01. 2020;11(5):411–55
  52. Hills RD, Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR. Gut microbiome: Profound implications for diet and disease. Nutrients. 2019;11(7):1613
  53. Neis EPJG, van Eijk HMH, Lenaerts K, Olde Damink SWM, Blaak EE, Dejong CHC, et al. Distal versus proximal intestinal short-chain fatty acid release in man. Gut [Internet]. 2019;68(4):764. Available from:

Last update:

No citation recorded.

Last update:

No citation recorded.