skip to main content

In Silico Analysis Prediction of B-Cell Epitope as a Vaccine Candidate for SARS-CoV-2 B.1.617.2 (Delta) Variant

Department of Biology, Universitas Diponegoro, Indonesia

Received: 9 Dec 2021; Revised: 8 Mar 2022; Accepted: 8 Mar 2022; Available online: 28 Apr 2022; Published: 28 Apr 2022.
Open Access Copyright (c) 2022 Journal of Biomedicine and Translational Research
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:

Background: The COVID-19 pandemic by SARS-CoV-2 has caused many losses. One way to prevent the spread of this virus is to get vaccinated. However, the latest SARS-CoV-2 variants, including variant B.1.617.2 (Delta) are doubtful to be inhibited by existing vaccines because of mutations. Therefore, we need a new vaccine candidate that is effective against this SARS-CoV-2 variant. Through an immunoinformatics approach with various software and analysis websites, vaccine candidates can be predicted in a short time.

Objective: Identity, analyze, obtain, and confirm the selected B-cell epitope sequence that can be used as a vaccine candidate for the SARS-CoV-2 B.1.617.2 (Delta) variant.

Methods: This research was conducted by isolating the amino acid peptide sequence in the SARS-CoV-2 B.1.617.2 (Delta) variant protein spike from the Protein Data Bank which is suspected to be an immunogenic epitope and can be used as a vaccine candidate. A Series of tests were carried out such as antigenicity, toxicity, allergenicity, and BLAST® protein to ensure that this vaccine candidate is safe for later application into the human body. The next stage is a conservation analysis to see its potential by comparing it with the SARS-CoV-2 Delta (B.1.617.2) variant spike protein sequence in Indonesia. The study ended by mapping amino acid peptides to the SARS-CoV-2 Delta (B.1.617.2) variant spike protein using the Biovia Discovery Studio Visualizer v21.1.0.20298 2020 software to ensure that the selected sequences were epitope.

Results: From the five amino acid peptides that have been isolated, the FTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFT epitope sequence has good results than the others. It is probable an antigen, non-toxic, non-allergen, and non-homolog to the human body protein.

Conclusion: Based on this in silico study, it was found that the FTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFT epitope sequence was the best to be used as a vaccine candidate of SARS-CoV-2 B.1.617.2 (Delta) variant.

Keywords: SARS-CoV-2 B.1.617.2 (Delta) variant, B-cell epitope, vaccine, in silico, immunoinformatics.

Fulltext View|Download
Keywords: SARS-CoV-2 B.1.617.2 (Delta) variant; B-cell epitope; vaccine; in silico; immunoinformatics.

Article Metrics:

  1. Zheng, J. (2020). SARS-CoV-2: an Emerging Coronavirus that Causes a Global Threat. International Journal of Biological Sciences, 16(10): 1678-1685.
  2. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. (2020). Epidemiological and Clinical Characteristics of 99 Cases of 2019 Novel Coronavirus Pneumonia in Wuhan, China: a Descriptive Study. Lancet, 395: 507-513.
  3. Janik, E, Niemcewicz M, Podogrocki M, Majsterek I, Bijak M. (2021). The Emerging Concern and Interest SARS-CoV-2 Variants. Patogens, 10, 633.
  4. Hartono, H., Yusuf Y. (2021). Tinjauan Molekuler dan Epidemiologi Mutasi pada Virus SARS-CoV-2. Jurnal Bionature, 22(1):43-49.
  5. Wall, E.C., Wu M, Harvey R, Kelly G, Warchal S, Sawyer C, et al. (2021). Neutralising Antibody Activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 Vaccination. Lancet, 397(10292):2331-2333.
  6. Torjesen, I. (2021). Covid-19: Delta Variant is Now UK’s Most Dominant Strain and Spreading Through Schools. BMJ, 373, 1445.
  7. Fowlkes, A., Gaglani M, Groover K, Thiese MS, Tyner H, Ellingson K, et al. (2021). Effectiveness of COVID-19 Vaccines in Preventing SARS-CoV-2 Infection Among Frontline Workers Before and During B.1.617.2 (Delta) Variant Predominance — Eight U.S. Locations, December 2020–August 2021. Morbidity and Mortality Weekly Report, 70(34):1167-1169.
  8. Anisa, S. (2017). Studi In Silico Gen Non Struktural Virus Dengue Serotipe 2 (DENV-2) sebagai Kandidat Vaksin Epitop Demam Berdarah. Dissertation. Jurusan Biologi, Universitas Islam Negeri Sunan Gunung Djati, Bandung
  9. Lervani, Y. (2018). Perkembangan Sel Limfosit B dan Penandanya untuk Flowcytometry. Jurnal Magna Medica, 1(5):50-57.
  10. Nugraha, J. (2011). Pemetaan Epitop dan Aplikasi Klinisnya. Indonesian Journal of Clinical Pathology and Medical Laboratory, 17(8):166-170.
  11. Mandasari, A. A. (2015). Analisis Epitop Sel B dan Sel T pada Protein prM/E Virus Dengue. Thesis. Program Studi Bioteknologi Sekolah Pascasarjana Universitas Gadjah Mada, Yogyakarta
  12. Setiawan, M., Syahrurachman A, Ibrahim F, Suwandono A. (2008). Perbedaan Sekuens Asam Amino Epitop Sel B dan Sel T pada protein Hemaglutinin (H) antara Virus Campak Liar dan Virus Vaksin di Indonesia. Sari Pediatri 10(3):190-195.
  13. Yang, C. H., Li HC, Lee WH, Lo SY. (2021). Antibodies Targeting Two Epitopes in SARS-CoV-2 Neutralize Pseudoviruses with the Spike Protein from Different Variants. Pathogens, 10, 869.
  14. Kolaskar, A. S., Tongaonkar PC. (1990). A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Letters, 276(1–2): 172–174.
  15. McCallum, M., Walls AC, Bowen JE, Corti D, Veesler D. (2020). Structure-guided covalent stabilization of coronavirus spike glycoprotein trimmers in the closed conformation. Nature Structural & Molecular Biology 27, 942-949.
  16. Vita, R., Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, et al. (2015). The Immune Epitope Database (IEDB) 3.0. Nucleic Acids Res. 43: 405-412.
  17. Rezaldi, F., Taupiqurrohman O, Fadillah MF, Rochmat A, Humaedi A, Fadhilah F. (2021). Identifikasi Kandidat Vaksin COVID-19 Berbasis Peptida dari Glikoprotein Spike SARS CoV-2 untuk Ras Asia secara In Silico. Jurnal Biotek Mediasiana Indonesia 10(1): 77-85.
  18. Syakuran, L. A. (2020). Desain Kandidat Vaksin SARS-CoV-2 Menggunakan Pendekatan Imunoinformatika. Fakultas Biologi Universitas Jenderal Soedirman, Purwokerto.
  19. Sanchez-Trincando, J.L., Gomez-Perosanz M, Reche PA. (2017). Fundamentals and Methods for T- and B-Cell Epitope Prediction. Journal of Immunology Research 2017.
  20. Taupiqurrohman, O., Yusuf M, Nuswantara S, Subroto T. (2016). Perancangan Vaksin Virus Papilloma Manusia Tipe-16 Berbasis Epitop dengan Berbantukan Imunoinformatika. Jurnal Pendidikan Kimia 8(3): 178-182.
  21. Bui, H-H., Sidney J, Li W, Fusseder N, Sette A. (2007). Development of an Epitope Conservancy Analysis Tool to Facilitate the Design of Epitope-Based Diagnostics and Vaccines. BMC Bioinformatics 8:361.
  22. Sun, J., Xu T, Wang S, Li G, Wu D, Cao Z. (2011). Does Difference Exist Between Epitope and Non-Epitope Residues? Immunome Research 7:3:1
  23. Hatmal, M.M., Alshaer W, Al-Hatamleh M.A.I, M. Hatmal, O. Smadi, M. O. Taha, et al. (2020). Comprehensive Structural and Molecular Comparison of Spike Proteins of SARS-CoV-2, SARS-CoV and MERS-CoV, and Their Interactions with ACE2. Cells, 9(12): 2638.
  24. Zhu, N., Zhang D, Wang W, Li X, Yang B, Song J. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine 382 (8): 727-33.
  25. Huang, Y., Yang C, Xu X, Xu W, Liu S. (2020). Structural and Functional Properties of SARS-CoV-1 Spike Protein: Potential Antivirus Drug Development for COVID-19. Acta Pharmacologica Sinica 41: 1141–1149.

Last update:

No citation recorded.

Last update:

No citation recorded.