skip to main content

Dekolorisasi Larutan Remazol Black B dengan Fenton-like Method menggunakan Modifier Oksida Timbal Hasil Sintesis dari Limbah Elektroda Aki

*Didik Setiyo Widodo orcid scopus  -  Department of Chemistry, Diponegoro University, Indonesia
Muhammad Cholid Djunaidi  -  Department of Chemistry, Diponegoro University, Indonesia
Marchelina One Kusumaningati  -  Department of Chemistry, Diponegoro University, Indonesia
Open Access Copyright 2025 Greensphere: Journal of Environmental Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Penelitian mengenai dekolorisasi larutan remazol black B (RBB) menggunakan metode Fenton-like telah dilakukan dengan memanfaatkan timbal dioksida (PbO₂) sebagai material alternatif dalam metode Fenton. PbO2 diperoleh dari konversi limbah elektroda baterai dengan menggunakan oksidator kuat H2O2 dan NaOCl. Tujuan penelitian adalah mensintesis timbal dioksida dari Pb pada limbah baterai dan menguji potensi dekolorisasi larutan remazol black B. Timbal dioksida disintesis dengan menggunakan H₂O₂ dan NaOCl dan dilanjutkan dengan pengeringan pada suhu 200°C dan 300°C. Hasil sintesis kemudian dikarakterisasi menggunakan SEM-EDX untuk mengetahui morfologi serta komposisi unsur penyusun. Uji potensi timbal dioksida dalam proses dekolorisasi larutan RBB dilakukan dengan metode Fenton-like, yang ion Fe²⁺ pada metode Fenton konvensional digantikan oleh  Pb2+ dari timbal dioksida. Timbal dioksida dalam dekolorisasi bereaksi dengan H₂O₂ membentuk radikal •OH yang memiliki potensial oksidasi tinggi. Sejumlah PbO2 ditambahkan ke dalam 100 mL larutan remazol black B dengan konsentrasi 25 ppm, kemudian diproses mengikuti prosedur metode Fenton. Hasil dekolorisasi dianalisis menggunakan spektrofotometer UV-Vis. Hasil karakterisasi menunjukkan bahwa unsur utama penyusun oksida adalah Pb dan O, sesuai dengan prediksi. Timbal dioksida yang disintesis menggunakan NaOCl mampu menghilangkan warna larutan hingga 99,37%, sedangkan produk yang disintesis menggunakan H₂O₂ menunjukkan kemampuan dekolorisasi sebesar 94,16%.

Fulltext View|Download
Keywords: Sintesis timbal dioksida, Metode Fenton-like, H2O2, NaOCl, dekolorisasi, remazol black B
Funding: Universitas Diponegoro

Article Metrics:

  1. Yin, Y., Liu, W., dan Zhang, C, 2024, Research Progress on the Electrocatalytic Degradation of Organic Pollutants by PbO2-Based Electrode, Biomed J Sci & Tech Res., Volume 58- Issue 3, 50261-50266, https://doi.org/10.26717/BJSTR.2024.58.009143
  2. Widodo, D. S., Ismiyarto dan Noorikhlas, F., 2009, Elektroremediasi Perairan Tercemar : Elektrodekolorisasi Larutan Remazol black B dengan Elektroda Timbal Dioksida / Karbon dan Analisis Larutan Sisa Dekolorisasi, Jurnal Kimia Sains dan Aplikasi, 12(1), hal. 1–6. https://doi.org/10.14710/jksa.12.1.1-6
  3. Iqbal, A., Yusaf, A., Usman, M., Hussain Bokhari, T., dan Mansha, A., 2023, Insight into the degradation of different classes of dyes by advanced oxidation processes; a detailed review, International Journal of Environmental Analytical Chemistry, 104(17), 5503–5537. https://doi.org/10.1080/03067319.2022.2125312
  4. Barbusinski, K., 2009, Henry John Horstman Fenton Short Biography and Brief History of Fenton Reagent Discovery, Metrologia 14:101-105. https://doi.org/10.1088/0026-1394/46/1/012
  5. Babuponnusami, A. dan Muthukumar, K., 2014, A Review on Fenton and Improvements to the Fenton Process for Wastewater Treatment, Journal of Environmental Chemical Engineering 2(1): 557-572. https://doi.org/10.1016/j.jece.2013.10.011
  6. Li, Z., dan Yu, C., 2024, Advanced oxidation in the treatment of three wastes, hal. 327–338, Elsevier BV, https://doi.org/10.1016/b978-0-443-19256-2.00018-1
  7. Selvaprakash, A., 2023, Fenton Process - A Pretreatment Option for Hospital Waste Water, International Journal of Civil, Environmental and Agricultural Engineering, 19–29, https://doi.org/10.34256/ijceae2313
  8. Khan, Z. U. H., Gul, N. S., Sabahat, S., Sun, J., Tahir, K., Shah, N. S., Muhammad, N., Rahim, A., Imran, M., Iqbal, J., Khan, T. M., Khasim, S., Farooq, U., dan Wu, J., 2023, Removal of organic pollutants through hydroxyl radical-based advanced oxidation processes, Ecotoxicology and Environmental Safety, 267, 115564, https://doi.org/10.1016/j.ecoenv.2023.115564
  9. Guo, Y., 2018, Treatment of Real Benzene Dye Intermediates Wastewater by the Fenton Method: Characteristics and Multi-response Optimization, RSC Advances, Royal Society of Chemistry, 8(1), hal. 80–90. https://doi.org/10.1039/c7ra09404c
  10. Widodo, D. S., Suyati, L., Gunawan, Haris, A., Wijaya, R. A., dan Safitri, S. E., 2022, November). Modification of Fenton method in decolorizing remazol black B via irradiationless approach using lead oxide. In AIP Conference Proceedings, Vol. 2553, No. 1, p. 020040). https://doi.org/10.1063/5.0103672
  11. P. Patmawati, D. S. Widodo, L. Suyati, K. Khabibi, and A. Haris, 2024, Modifikasi Metode Fenton pada Dekolorisasi Limbah Pewarna Remazol Black B dengan Oksida Timbal Hasil Sintesis pada Variasi Molar Pb2+ dan NaOH, Greensphere: Journal of Environmental Chemistry, vol. 2, no. 2, pp. 23-29, Jan. 2023. https://doi.org/10.14710/gjec.2022.16776
  12. Jena, M. C., Mishra, S. K., dan Moharana, H. S., 2024, Challenges and way forward in the handling and disposal of battery waste: Towards sustainable practices, Sustainable Social Development, 2(4), 2866, https://doi.org/10.54517/ssd.v2i4.2866
  13. Salehzadeh, J., 2013, Removal of Heavy Metals Pb2+, Cu2+, Zn2+, Cd2+, Ni2+, Co2+ and Fe3+ from Aqueous Solutions by using Xanthium Pensylvanicum, Leonardo Journal of Sciences, Issue 23, 97-104
  14. Svehla G., 2008, Vogel's Qualitative Inorganic Analysis, edisi ke-7, Pearson Education
  15. Walton, D. E., dan Mumford, C. J., 1999, Spray Dried Products—Characterization of Particle Morphology, Chemical Engineering Research & Design, 77(1), 21–38. https://doi.org/10.1205/026387699525846
  16. Porowska, A., Dosta, M., Fries, L., Gianfrancesco, A., Heinrich, S., dan Palzer, S., 2016, Predicting the surface composition of a spray-dried particle by modeling component reorganization in a drying droplet. Chemical Engineering Research & Design, 110, 131–140. https://doi.org/10.1016/J.CHERD.2016.03.007
  17. Kabbara, H., Ghanbaja, J., Redjaïmia, A., Belmonte, T., dan Belmonte, T., 2019, Crystal structure, morphology and formation mechanism of a novel polymorph of lead dioxide, γ-PbO2. Journal of Applied Crystallography, 52(2), 304–311, https://doi.org/10.1107/S1600576719001079
  18. Both, E.M., 2019, Powder morphology development during spray drying. https://doi.org/10.18174/477793
  19. Koppenol, W. H., dan Liebman, J. F., 1984, The oxidizing nature of the hydroxyl radical. A comparison with the ferryl ion (FeO2), The Journal of Physical Chemistry, 88(1), 99–101. https://doi.org/10.1021/J150645A024
  20. Bilińska, L., Gmurek, M., dan Ledakowicz, S., 2015, Application of Advanced Oxidation Technologies for Decolorization and Mineralization of Textile Wastewaters, Journal of Advanced Oxidation Technologies, 18(2), 185–194. https://doi.org/10.1515/JAOTS-2015-0202

Last update:

No citation recorded.

Last update:

No citation recorded.