skip to main content

Sintesis ZrO₂ dan ZnO Berbasis Templat Metal-Organic Frameworks serta CQDs sebagai Fotokatalis untuk Degradasi Limbah Organik

*Alvin Romadhoni Putra Hidayat orcid scopus  -  Department of Chemistry, Universitas Diponegoro, Indonesia
Linda Suyati  -  Department of Chemistry, Universitas Diponegoro, Indonesia
Pramastuti Adiar Rukmi  -  Department of Chemistry, Universitas Diponegoro, Indonesia
Salsabila Salsabila  -  Department of Chemistry, Universitas Diponegoro, Indonesia
Chintami Aurora Wulandari  -  Department of Chemistry, Universitas Diponegoro, Indonesia
Open Access Copyright 2025 Greensphere: Journal of Environmental Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Pencemaran limbah organik, terutama dari zat warna sintetis, merupakan permasalahan lingkungan yang memerlukan metode efektif untuk degradasi. Fotokatalisis berbasis semikonduktor menawarkan solusi berkelanjutan karena mampu menguraikan polutan menjadi senyawa tidak berbahaya. Tujuan penelitian ini adalah sintesis dan karakterisasi fotokatalis berbasis ZrO₂, ZnO, serta CQDs yang diperoleh dari template MOFs serta mengevaluasi aktivitas fotokatalitiknya dalam degradasi metilen biru. Penelitian ini melaporkan sintesis material fotokatalis berbasis Metal-Organic Frameworks (MOFs) sebagai template untuk menghasilkan oksida logam ZrO₂ dan ZnO, serta sintesis terpisah Carbon Quantum Dots (CQDs). CQDs disintesis menggunakan metode microwave-assisted, sedangkan ZrO₂ diperoleh melalui kalsinasi material UiO-66 yang disintesis menggunakan metode solvotermal. Sementara itu, ZnO disintesis melalui kalsinasi material ZIF-8 yang diperoleh pada kondisi suhu ruang. Karakterisasi menggunakan XRD menunjukkan bahwa UIO-66 dan ZIF-8 berhasil terbentuk dengan pola difraksi khas masing-masing struktur kristalnya. Hasil FTIR memperlihatkan keberadaan gugus fungsi khas pada UIO-66, ZIF-8, ZrO₂, dan ZnO yang menandakan keberhasilan proses sintesis dan transformasi struktur MOF menjadi oksida logam. Uji fotokatalitik dilakukan menggunakan larutan metilen biru di bawah iradiasi UV dengan variasi waktu kontak 5–25 menit. Hasil degradasi menunjukkan bahwa ZnO memiliki aktivitas fotokatalitik lebih tinggi (efisiensi degradasi 66,4%) dibandingkan ZrO₂ (7,5%). Penelitian ini mengonfirmasi potensi ZnO berbasis template MOF dan CQDs sebagai kandidat fotokatalis untuk pengolahan limbah organik.

Fulltext View|Download
Keywords: Fotokatalis, Metal Organic Frameworks, Oksida Logam, Carbon Quantum Dots, Pewarna
Funding: Universitas Diponegoro

Article Metrics:

  1. F. Lu and D. Astruc, “Nanocatalysts and other nanomaterials for water remediation from organic pollutants,” Coord Chem Rev, vol. 408, p. 213180, 2020, doi: https://doi.org/10.1016/j.ccr.2020.213180
  2. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, and J. M. Herrmann, “Photocatalytic degradation pathway of methylene blue in water,” Appl Catal B, vol. 31, no. 2, pp. 145–157, 2001, doi: https://doi.org/10.1016/S0926-3373(00)00276-9
  3. H. D. Rizqi and A. S. Purnomo, “The ability of brown-rot fungus Daedalea dickinsii to decolorize and transform methylene blue dye,” World J Microbiol Biotechnol, vol. 33, no. 5, p. 0, 2017, doi: https://doi.org/10.1007/s11274-017-2256-z
  4. A. Adewuyi, “Chemically modified biosorbents and their role in the removal of emerging pharmaceuticalwaste in the water system,” Water (Switzerland), vol. 12, no. 6, pp. 1–31, 2020, doi: https://doi.org/10.3390/W12061551
  5. T. Y. Tan et al., “Electrochemically enhanced simultaneous degradation of sulfamethoxazole, ciprofloxacin and amoxicillin from aqueous solution by multi-walled carbon nanotube filter,” Sep Purif Technol, vol. 235, p. 116167, 2020, doi: https://doi.org/10.1016/j.seppur.2019.116167
  6. B. Abdollahi, A. Najafidoust, E. Abbasi Asl, and M. Sillanpaa, “Fabrication of ZiF-8 metal organic framework (MOFs)-based CuO-ZnO photocatalyst with enhanced solar-light-driven property for degradation of organic dyes,” Arabian Journal of Chemistry, vol. 14, no. 12, p. 103444, 2021, doi: https://doi.org/10.1016/j.arabjc.2021.103444
  7. S. Gholizadeh Khasevani, N. Faroughi, and M. R. Gholami, “Metal-organic framework-templated synthesis of t-ZrO2 /γ-Fe2O3 supported AgPt nanoparticles with enhanced catalytic and photocatalytic properties,” Mater Res Bull, vol. 126, no. February, p. 110838, 2020, doi: https://doi.org/10.1016/j.materresbull.2020.110838
  8. L. L. Zulfa et al., “ Synergistic effect of modified pore and heterojunction of MOF-derived α-Fe 2 O 3 /ZnO for superior photocatalytic degradation of methylene blue ,” RSC Adv, vol. 13, no. 6, pp. 3818–3834, 2023, doi: https://doi.org/10.1039/d2ra07946a
  9. M. Cai, C. Wang, Y. Liu, R. Yan, and S. Li, “Boosted photocatalytic antibiotic degradation performance of Cd0.5Zn0.5S/carbon dots/Bi2WO6 S-scheme heterojunction with carbon dots as the electron bridge,” Sep Purif Technol, vol. 300, p. 121892, 2022, doi: https://doi.org/10.1016/j.seppur.2022.121892
  10. M. Xiaobo, L. Xinyu, Z. Jie, H. Xiaoxian, and Y. Weichun, “Heterostructured TiO2@HKUST-1 for the enhanced removal of methylene blue by integrated adsorption and photocatalytic degradation,” Environmental Technology (United Kingdom), vol. 0, no. 0, pp. 1–32, 2020, doi: https://doi.org/10.1080/09593330.2020.1745295
  11. J. Zheng et al., “Hydrothermally synthesized Ti/Zr bimetallic MOFs derived N self-doped TiO2/ZrO2 composite catalysts with enhanced photocatalytic degradation of methylene blue,” Colloids Surf A Physicochem Eng Asp, vol. 623, no. March, p. 126629, 2021, doi: https://doi.org/10.1016/j.colsurfa.2021.126629
  12. H. Y. Shu, M. C. Chang, and T. H. Tseng, “Solar and visible light illumination on immobilized nano zinc oxide for the degradation and mineralization of orange G in wastewater,” Catalysts, vol. 7, no. 5, 2017, doi: https://doi.org/10.3390/catal7050164
  13. X. Lei, Y. Cao, Q. Chen, X. Ao, Y. Fang, and B. Liu, “ZIF-8 derived hollow CuO/ZnO material for study of enhanced photocatalytic performance,” Colloids Surf A Physicochem Eng Asp, vol. 568, pp. 1–10, 2019, doi: https://doi.org/10.1016/j.colsurfa.2019.01.072
  14. L. Sun et al., “N self-doped ZnO derived from microwave hydrothermal synthesized zeolitic imidazolate framework-8 toward enhanced photocatalytic degradation of methylene blue,” J Colloid Interface Sci, vol. 565, pp. 142–155, 2020, doi: 10.1016/j.jcis.2019.12.107
  15. Z. Chen et al., “ZnO/NiO heterostructures with enhanced photocatalytic activity obtained by ultrasonic spraying of a NiO shell onto ZnO nanorods,” Colloids Surf A Physicochem Eng Asp, vol. 648, no. May, p. 129366, 2022, doi: 10.1016/j.colsurfa.2022.129366
  16. Y. de J. Acosta-Silva, S. Gallardo-Hernández, S. Rivas, F. Espejel-Ayala, and A. Méndez-López, “Photocatalytic Activities of Methylene Blue Using ZrO2 Thin Films at Different Annealing Temperatures,” Coatings, vol. 14, no. 5, May 2024, doi: 10.3390/coatings14050537
  17. C. Bueno et al., “Structural, Morphological, and Optical Properties of Nano- and Micro-Structures of ZnO Obtained by the Vapor–Solid Method at Atmospheric Pressure and Photocatalytic Activity,” Crystals (Basel), vol. 14, no. 11, Nov. 2024, doi: 10.3390/cryst14110941
  18. R. K. Shukla, J. Mirzaei, A. Sharma, D. Hofmann, T. Hegmann, and W. Haase, “Electro-optic and dielectric properties of a ferroelectric liquid crystal doped with chemically and thermally stable emissive carbon dots,” RSC Adv, vol. 5, no. 43, pp. 34491–34496, 2015, doi: 10.1039/c5ra01257k
  19. K. Chung Hui, W. Lun Ang, and N. Soraya Sambudi, “Nitrogen and bismuth-doped rice husk-derived carbon quantum dots for dye degradation and heavy metal removal,” J Photochem Photobiol A Chem, vol. 418, p. 113411, 2021, doi: https://doi.org/10.1016/j.jphotochem.2021.113411
  20. N. Ishak, P. Galář, R. Mekkat, M. Grandcolas, and M. Šoóš, “Fine-tuning photoluminescence and photocatalysis: Exploring the effects of carbon quantum dots synthesis and purification on g-C3N4,” Colloids Surf A Physicochem Eng Asp, vol. 706, Feb. 2025, doi: 10.1016/j.colsurfa.2024.135789
  21. A. R. P. Hidayat et al., “Properties and performance of Ni(II) doped magnetic Fe3O4@mesoporous SiO2/UiO-66 synthesized by an ultrasound assisted method for potential adsorbent of methyl orange: Kinetic, isotherm and thermodynamic studies,” Nano-Structures and Nano-Objects, vol. 37, no. November 2023, p. 101077, 2024, doi: 10.1016/j.nanoso.2023.101077
  22. A. R. P. Hidayat et al., “Linear and nonlinear isotherm, kinetic and thermodynamic behavior of methyl orange adsorption using modulated Al2O3@UiO-66 via acetic acid,” J Environ Chem Eng, vol. 9, no. 6, p. 106675, 2021, doi: 10.1016/j.jece.2021.106675
  23. C. Wang et al., “Carbon quantum dots prepared by pyrolysis: Investigation of the luminescence mechanism and application as fluorescent probes,” Dyes and Pigments, vol. 204, p. 110431, Aug. 2022, doi: 10.1016/J.DYEPIG.2022.110431
  24. D. M. Venturi, F. Campana, F. Marmottini, F. Costantino, and L. Vaccaro, “Extensive screening of green solvents for safe and sustainable UiO-66 synthesis,” ACS Sustain Chem Eng, vol. 8, no. 46, pp. 17154–17164, Nov. 2020, doi: 10.1021/acssuschemeng.0c05587
  25. M. Bagherzadeh, F. Ashouri, and M. Daković, “Synthesis, characterizations and catalytic studies of a new two-dimensional metal−organic framework based on Co–carboxylate secondary building units,” J Solid State Chem, vol. 223, pp. 32–37, Mar. 2015, doi: 10.1016/J.JSSC.2014.05.011
  26. X. Sun, D. Hu, L. –Y Yang, N. Wang, Y. G. Wang, and X. –K Ouyang, “Efficient adsorption of Levofloxacin from aqueous solution using calcium alginate/metal organic frameworks composite beads,” J Solgel Sci Technol, vol. 91, no. 2, pp. 353–363, Aug. 2019, doi: 10.1007/s10971-019-05001-7
  27. N. C. Horti, M. D. Kamatagi, S. K. Nataraj, M. N. Wari, and S. R. Inamdar, “Structural and optical properties of zirconium oxide (ZrO2) nanoparticles: Effect of calcination temperature,” Nano Express, vol. 1, no. 1, Jun. 2020, doi: 10.1088/2632-959X/ab8684
  28. J. Qiu, Y. Feng, X. Zhang, M. Jia, and J. Yao, “Acid-promoted synthesis of UiO-66 for highly selective adsorption of anionic dyes: Adsorption performance and mechanisms,” J Colloid Interface Sci, vol. 499, pp. 151–158, Aug. 2017, doi: 10.1016/j.jcis.2017.03.101
  29. H. C. Sathisha, Anitha, G. Krishnamurthy, and G. Nagaraju, “Facile green synthesis of ZnO/ZrO2 nanocomposite for photocatalytic degradation and chromium (VI) reduction,” J Cryst Growth, vol. 651, Feb. 2025, doi: 10.1016/j.jcrysgro.2024.128009
  30. F. Boran and M. Okutan, “Synthesis optimization of ZrO2 nanostructures for photocatalytic applications,” Turk J Chem, vol. 47, no. 2, pp. 448–464, 2023, doi: 10.55730/1300-0527.3551
  31. V. N. Jafarova and G. S. Orudzhev, “Structural and electronic properties of ZnO: A first-principles density-functional theory study within LDA(GGA) and LDA(GGA)+U methods,” Solid State Commun, vol. 325, 2021, doi: 10.1016/j.ssc.2020.114166
  32. O. Długosz, A. Staroń, P. Brzoza, and M. Banach, “Synergistic effect of sorption and photocatalysis on the degree of dye removal in single and multicomponent systems on ZnO-SnO2,” Environmental Science and Pollution Research, vol. 29, no. 18, 2022, doi: 10.1007/s11356-021-18044-7

Last update:

No citation recorded.

Last update:

No citation recorded.