skip to main content

Sintesis Silika Gel-Cu(II) dari Limbah Geothermal dengan Metode Sol-Gel sebagai Antibakteri Escherichia Coli dan Staphylococcus Aureus

Wardah Nabilah  -  Department of Industrial Engineering, Faculty of Engineering, Jenderal Soedirman University, Purbalingga, Indonesia 53371, Indonesia
*Pardoyo Pardoyo  -  Chemistry Department, Diponegoro University, Indonesia
Choiril Azmiyawati  -  Department of Chemistry, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Open Access Copyright 2025 Greensphere: Journal of Environmental Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Sintesis material silika gel-Cu(II) telah dilakukan. Tujuan dari penelitian ini adalah untuk mensintesis silika gel-Cu(II) berbasis limbah geothermal PLTPB Dieng serta menentukan pengaruh variasi konsentrasi Cu(II) dan waktu aging terhadap aktivitas antibakteri Escherichia coli dan Staphylococcus aureus. Natrium silikat diperoleh dari limbah geothermal melalui ekstraksi alkali dan selanjutnya dilakukan sintesis silika gel-Cu(II) melalui metode sol-gel dengan adanya penambahan CuSO4 dalam berbagai variasi konsentrasi dan waktu aging. Hasil penelitian menunjukkan bahwa silika gel-Cu(II) telah berhasil disintesis. Material katalis memiliki ukuran <10 µm dan berwarna biru muda. Studi aktivitas antibakteri menunjukkan silika gel-Cu(II) dengan konsentrasi CuSO4 0,5 M dan waktu aging 84 jam memiliki aktivitas antibakteri paling baik. Berdasarkan pengamatan diameter zona bening, diketahui bahwa efektifitas silika gel-Cu(II) 0,5 M dalam menghambat pertumbuhan bakteri Staphylococcus aureus lebih tinggi dibandingkan dengan Escherichia coli.

 

Fulltext View|Download
Keywords: limbah geothermal; sol-gel; silika; tembaga; antibakteri
Funding: Universitas Diponegoro

Article Metrics:

  1. Muljani S., Wahyudi B., dan Sumada K., 2016, Potassium Silicate Foliar Fertilizer Grade from Geothermal Sludge and Pyrophyllite, MATEC Web of Conference, 58, 01021
  2. Meiyati I.N., Agustin R.S., dan Martiono E.S., 2015, Pemanfaatan Lumpur Geothermal (Geothermal Sludge) untuk Pengganti Sebagian Semen terhadap Kuat Tekan Mortar, Indonesian Journal of Civil Engineering Education, 1–8. https://jurnal.uns.ac.id/ijcee/article/view/17936/14322
  3. Petrus, H.T.B.M., Olvianas, M., Shafiyurrahman, M.F., Pratama, I.G.A.A.N., Jenie, S.N.A., Astuti, W., Nurpratama, M.I., Ekaputri, J.J., dan Anggara, F, 2022, Circular Economy of Coal Fly Ash and Silica Geothermal for Green Geopolymer: Characteristic and Kinetic Study, Gels, 8(233)
  4. Tessema B., Gonfa G., dan Hailegiorgis S.M., 2023, Characteristic Investigations on Bio–Silica Gel Prepared from Teff (Eragrostis tef) Straw: Effect of Calcination Time, Materials Research Express, 10, 1–8
  5. Ong M.V., dan Chua A., 2024, Optimization of Commercial Silica Gel Regeneration Response Methodology, ASEAN Engineering Journal, 2, 37–44
  6. Rosalina K.N., Wukirsari T., Hudiyono S., dan Handayani S., 2024, Utilization of Silica Gel for the Synthesis of Geranyl Laurate and Citronellyl Laurate, Bulletin of Chemical Reaction Engineering & Catalysis, 19(2), 350–360
  7. Jal P.K.K., Patel S., dan Mishra B.K.K., 2004, Chemical Modification of Silica Surface by Immobilization of Functional Groups for Extractive Concentration of Metal Ions, Talanta, 62(5), 1005–1028
  8. Jeon H.-J., Yi S.-C., dan Oh S.-G., 2003, Preparation and Antibacterial Effects of Ag–SiO₂ Thin Films by Sol–Gel Method, Biomaterials, 24(27), 4921–4928
  9. Mahmoudi P., Reza M., Babaei H., dan Jing F., 2022, Antibacterial Ti–Cu Implants: A Critical Review on Mechanisms of Action, Materials Today Bio, 17, 100447. https://doi.org/10.1016/j.mtbio.2022.100447
  10. Liu T., Ma M., Ali A., Liu Q., Bai R., Zhang K., Guan Y., Wang Y., Liu J., dan Zhou H., 2024, Self-Assembled Copper Tannic Acid Nanoparticles: A Powerful Nano-Bactericide by Valence Shift of Copper, Nano Today, 54, 102071. https://doi.org/10.1016/j.nantod.2023.102071
  11. Chu H., Chen W., Fang Y., Liang Y., Long B., Zhang F., Li W., dan Jiang L., 2025, Effect of CuSO₄ Content and pH on the Mechanical Properties and Antibacterial Ability of Copper-Plated Cement-Based Material, Cement and Concrete Composites, 155, 105848. https://doi.org/10.1016/j.cemconcomp.2024.105848
  12. Golubeva A. A., Meleshko A. A., dan Tolstoy V. P., 2025, Fast Hydrolysis in the Microdroplets of an Aqueous Solution of CuSO₄ on the Surface of an Alkali Solution and the Formation of Ordered Arrays of Open Microspheres with Cu(OH)₂ Nanocrystal Walls, Russian Journal of Inorganic Chemistry, 70(2), 290–297
  13. Zalevskaya O.A., dan Gur Y.A., 2021, Recent Studies on the Antimicrobial Activity of Copper Complexes, Russian Journal of Coordination Chemistry, 47(12), 861–880
  14. Vincent M., Duval R.E., dan Hartemann P., 2017, Contact Killing and Antimicrobial Properties of Copper, Journal of Applied Microbiology, 124, 1–8
  15. Zhong C.-C., Zhao T., Hogstrand C., Chen F., Song C.-C., dan Luo Z., 2022, Copper (Cu) Induced Changes of Lipid Metabolism through Oxidative Stress–Mediated Autophagy and Nrf2/PPARγ Pathways, The Journal of Nutritional Biochemistry, 100, 108883. https://doi.org/10.1016/j.jnutbio.2021.108883
  16. Salah I., Parkin I.P., dan Allan E., 2021, Copper as an Antimicrobial Agent: Recent Advances, RSC Advances, 11, 18179–18186
  17. Qin J., Wu Q., Fan D., Ren J., Chen Y., dan Li G., 2025, A Stabilized and Antibacterial Strategy of Plant-Derived Extracts Encapsulated by Mesoporous Silica for Decorated Blockboards, Surfaces and Interfaces, 67, 106623. https://doi.org/10.1016/j.surfin.2025.106623
  18. Nguyen M.N., 2021, Potential Use of Silica-Rich Biochar for the Formulation of Adaptively Controlled Release Fertilizers: A Mini Review, Journal of Cleaner Production, 307, 127188. https://doi.org/10.1016/j.jclepro.2021.127188
  19. Young M., dan Santra S., 2014, Copper (Cu)–Silica Nanocomposite Containing Valence-Engineered Cu: A New Strategy for Improving the Antimicrobial Efficacy of Cu Biocides, Journal of Agricultural and Food Chemistry, 62(26), 6043–6052. https://pubs.acs.org/doi/pdf/10.1021/jf502350w
  20. Pierre A.C., 2020, Introduction to Sol–Gel Processing, 2nd Ed., Springer, Switzerland
  21. Ekadenti A., Pardoyo P., dan Sriyanti S., 2023, Pengaruh pH Terhadap Sintesis Silika Gel dari Limbah Geotermal dengan Penambahan Cetyltrimethylammonium Bromide (CTAB) untuk Adsorpsi Rhodamine B, Greensphere: Journal of Environmental Chemistry, 3(1), 20–25
  22. Kusumastuti Y., Petrus H.T.B.M., Yohana F., Buwono A.T., dan Zaqina R.B., 2017, Synthesis and Characterization of Biocomposites Based on Chitosan and Geothermal Silica, AIP Conference Proceedings, 1823, 1–6
  23. Widiyandari H., Pardoyo P., Sartika J, Putra O.A., Purwanto A., dan Ernawati L., 2021, Synthesis of Mesoporous SiO₂ Xerogel from Geothermal Sludge Using Sulfuric Acid as Gelation Agent, International Journal of Engineering: Transactions A (Basics), 34(7), 1569–1575
  24. Pardoyo P., Sriyanti S., Meinar R.H., Suhartana S., dan Djunaidi M.C., 2024, The Effect of Aging Time on Silica Xerogel–PEG6000 from Geothermal Waste for Methylene Blue Adsorption, AIP Conference Proceedings, 3165(1), 1–6
  25. Suhadi E., Sylviana A., Kurniawansyah F., Ni'mah H., Petrus H.T.B.M., Mahfud M., dan Roesyadi A., 2024, Preparation of Sulfonated SiO₂ Catalyst from Geothermal Sludge Waste for Sago Flour Hydrolysis, Advances in Science and Technology, 138, 71–75. https://www.scientific.net/AST.138.71
  26. Sya’bani M.W., Rochmadi, Perdana I., dan Prasetya A., 2025, Modified Nanoparticle Geothermal Silica in Rubber Composites: Mechanical Properties and Vulcanization Kinetics, Iranian Polymer Journal, 34(11), 1903–1915. https://doi.org/10.1007/s13726-025-01476-0
  27. Nawaz M.Z., Alghamdi H.A., Zahoor M., Rashid F., Alshahrani A.A., Alghamdi N.S., Pugazhendhi A., dan Zhu D., 2024, Synthesis of Novel Metal Silica Nanoparticles Exhibiting Antimicrobial Potential and Applications to Combat Periodontitis, Environmental Research, 241, 117415. https://doi.org/10.1016/j.envres.2023.117415
  28. Yapa P.N., Munaweera I., Sandaruwan C., Weerasinghe L., dan Weerasekera M.M., 2024, Metal Doped Silica Nanohybrids with Extensive Bacterial Coverage for Antibacterial Applications Exhibit Synergistic Activity, Biomaterials Advances, 157, 213753. https://doi.org/10.1016/j.bioadv.2023.213753
  29. Hachemaoui M., Boukoussa., Mokhtar A., Mekki A., Beldjilali M., Benaissa M., Zaoui F., Hakiki A., Chaibi W., Sassi M., dan Hamacha R., 2020, Dyes Adsorption, Antifungal and Antibacterial Properties of Metal Loaded Mesoporous Silica: Effect of Metal and Calcination Treatment, Materials Chemistry and Physics, 256, 123704. https://doi.org/10.1016/j.matchemphys.2020.123704
  30. Faustova Zh. V., dan Slizhov Yu. G., 2017, Effect of Solution pH on the Surface Morphology of Sol–Gel Derived Silica Gel, Inorganic Materials, 53(3), 287–291
  31. Avotina, L., Goldmane, A.E., Zaslavskis, A., Romanova, M., Vanags, E., Sorokins, H., Kizane, G., dan Dekhtyar, Y., 2024, Estimation of Thermal Stability of Si–SiO₂–W Nanolayered Structures with Infrared Spectrometry, Materials, 17(7), 1–9. https://doi.org/10.3390/ ma17010007
  32. Malavi P.S., Karmkar S., Karmakar D., Mishra A.K., Bhatt H., Patel N.N., dan Sharma S.M., 2013, High Pressure Structural and Vibrational Properties of the Spin-Gap System Cu₂PO₄(OH), Journal of Physics: Condensed Matter, 25(4)
  33. Santra S., 2017, Silica-Based Antibacterial and Antifungal Nanoformulation, US2017/0118980 A1. United States
  34. Chiron N., Guilet R., dan Deydier E., 2003, Adsorption of Cu(II) and Pb(II) onto a Grafted Silica: Isotherms and Kinetic Models, Water Research, 37(13), 3079–3086. https://www.sciencedirect.com/science/article/pii/S0043135403001568
  35. Ghani U., Hussain S., Ali A., Tirth V., Algahtani A., Zaman A., Mushtaq M., Althubeiti K., dan Aljohani M., 2022, Hydrothermal Extraction of Amorphous Silica from Locally Available Slate, ACS Omega, 7(7), 6113–6120
  36. Fernandes L., dan Salomão R., 2018, Preparation and Characterization of Mullite–Alumina Structures Formed ‘in Situ’ from Calcined Alumina and Different Grades of Synthetic Amorphous Silica, Materials Research, 21(3)
  37. Greenwood, 1995, Antibiotic Susceptibility (Sensitivity) Test, Antimicrobial and Chemotherapy, McGraw Hill Company, USA
  38. Salni N., Marisa H., Ratna D., dan Mukti W., 2011, Isolasi Senyawa Antibakteri dari Daun Jengkol (Pithecolobium lobatum Benth) dan Penentuan Nilai KHM-nya, Jurnal Penelitian Sains, Universitas Sriwijaya

Last update:

No citation recorded.

Last update:

No citation recorded.