skip to main content

Fitoremediasi Logam Besi (Fe) dalam Lindi TPA Jatibarang Menggunakan Echinodorus palaefolius: Pengaruh Waktu Kontak terhadap Efisiensi Penyerapan

*Mellyaning Oktaviani Sonya Kirana Sari orcid  -  1. Master of Biology, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275;, Indonesia
Fitra Adi Prayogo  -  1. Master of Biology, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275;, Indonesia
Open Access Copyright 2025 Greensphere: Journal of Environmental Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Penelitian ini mengevaluasi efektivitas tanaman Echinodorus palaefolius dalam sistem lahan basah buatan untuk remediasi besi (Fe) dari lindi yang dihasilkan oleh tempat pembuangan akhir (TPA). Eksperimen dilakukan dalam kondisi terkendali dengan empat waktu kontak (0, 7, 14, dan 21 hari) menggunakan tiga ulangan untuk setiap perlakuan. Hasil penelitian menunjukkan bahwa E. palaefolius berhasil menghilangkan 95,98% Fe dari lindi, dengan konsentrasi Fe dalam tanah berkurang sebanyak 29,49% pada hari ke-7 (p < 0,01). Uji ANOVA dan Duncan’s Multiple Range Test (DMRT) mengonfirmasi signifikansi statistik dari temuan ini. Dibandingkan dengan metode konvensional seperti presipitasi kimia, penggunaan E. palaefolius menawarkan biaya yang lebih rendah, efisiensi yang lebih tinggi, dan limbah sekunder yang minimal, menjadikannya solusi yang berkelanjutan untuk penanganan lindi. Penelitian ini menyimpulkan bahwa E. palaefoliusmerupakan biosorben yang efektif untuk remediasi Fe, dengan waktu kontak optimal pada hari ke-7, yang menghasilkan konsentrasi Fe akhir pada lindi yang memenuhi standar kualitas air untuk pembuangan ke Sungai Kreo sesuai Peraturan Daerah Jawa Tengah No. 5 Tahun 2012. Temuan ini menyoroti potensi E. palaefolius sebagai metode fitoremediasi yang ramah lingkungan dan dapat diterapkan dalam skala besar untuk pengelolaan limbah TPA.

Note: This article has supplementary file(s).

Fulltext View|Download |  Transcripts
Fitoremediasi Logam Besi (Fe) dalam Lindi TPA Jatibarang Menggunakan Echinodorus palaefolius: Pengaruh Waktu Kontak terhadap Efisiensi Penyerapan
Subject
Type Transcripts
  Download (6MB)    Indexing metadata
Keywords: Echinodorus palaefolius, Fitoremediasi, Penghilangan Besi, Pengolahan Leachate, Teknik Lingkungan.

Article Metrics:

  1. Ancuceanu, R., Dinu, M., & Anghel, A. I. (2015). Heavy metal uptake and translocation by plants: A review. Farmacia, 63(5), 631–639
  2. Aronsson, P., Dahlin, T., & Dimitriou, I. (2010). Treatment of landfill leachate by irrigation of willow coppice—Plant response and treatment efficiency. Environmental Pollution, 158(3), 795–804. https://doi.org/10.1016/j.envpol.2009.10.003
  3. Caroline, J., & Guido, L. (2015). Phytoremediation of lead (Pb) using water jasmine plant (Echinodorus palaefolius) in copper and brass smelting industrial waste. Journal of Application Science and Technology III
  4. Central Java Provincial Regulation No. 5. (2012). Wastewater quality standards (Amendment to Central Java Provincial Regulation No. 10 of 2004). Central Java Provincial Government
  5. Chen, H., Dai, G. L., Zhao, J., Zhong, A. G., Wu, J. Y., & Yan, H. (2010). Removal of copper (II) ions by a biosorbent—Cinnamomum camphora leaves powder. Journal of Hazardous Materials, 177(1–3), 228–236. https://doi.org/10.1016/j.jhazmat.2009.12.022
  6. Chen, L., Wang, Y., & Zhang, H. (2023). Phytoremediation of heavy metals by aquatic plants: Mechanisms and applications. Journal of Environmental Management, 325, 116589. https://doi.org/10.1016/j.jenvman.2022.116589
  7. Danh, L. T., Truong, P., Mammucari, R., & Foster, N. (2019). Phytoremediation of heavy metal contaminated soil and water using aquatic plants in constructed wetlands. Environmental Technology, 40(8), 1012–1023. https://doi.org/10.1080/09593330.2017.1418916
  8. Favas, P. J. C., Pratas, J., Varun, M., D’Souza, R., & Paul, M. S. (2014). Phytoremediation of soils contaminated with metals and metalloids at mining areas: Potential of native flora. In M. C. Hernandez-Soriano (Ed.), Environmental risk assessment of soil contamination (pp. 485–516). IntechOpen. https://doi.org/10.5772/57469
  9. Gupta, A., & Shrivastava, R. (2024). Advances in physicochemical techniques for heavy metal removal from wastewater. Water Research, 248, 120845. https://doi.org/10.1016/j.watres.2023.120845
  10. Hadad, H. R., Maine, M. A., Pinciroli, M., & Mufarrege, M. M. (2023). Phytoremediation of zinc and copper in landfill leachate using Echinodorus palaefolius and Typha domingensis. Ecological Engineering, 188, 106879. https://doi.org/10.1016/j.ecoleng.2022.106879
  11. Hariyanto. (2014). Waste management in Semarang city towards a clean city. Jurnal Geografi, 11(2), 237–246. https://doi.org/10.15294/jg.v11i2.8031
  12. Hassan, S. S., Ali, M., & Ahmed, T. (2024). Sustainable biosorbents for heavy metal remediation: A review of recent developments. Environmental Science and Technology Letters, 11(3), 189–197. https://doi.org/10.1021/acs.estlett.3c00845
  13. Khalid, A., Arshad, M., & Malik, K. A. (2022). Challenges and innovations in conventional wastewater treatment technologies. Chemosphere, 287, 132345. https://doi.org/10.1016/j.chemosphere.2021.132345
  14. Krohling, C. A., Eutrópio, F. J., Bertolazi, A., Dobbss, L. B., Campostrini, E., Dias, T., & Ramos, A. C. (2016).Ecophysiology of iron homeostasis in plants. Soil Science and Plant Nutrition, 62(1), 39–47. https://doi.org/10.1080/00380768.2015.1123112
  15. Kumar, A., & Sindhu, S. S. (2024). Iron sensing, signalling, and acquisition by microbes and plants under environmental stress: Use of iron-solubilizing bacteria in crop production. Environmental and Experimental Botany, 219, 105614. https://doi.org/10.1016/j.envexpbot.2023.105614
  16. Kumar, R., & Patel, V. (2023). Plant-based biosorbents for heavy metal removal: A sustainable approach. Environmental Pollution, 316, 120567. https://doi.org/10.1016/j.envpol.2022.120567
  17. Lee, C. G., Javed, H., Zhang, D., & Park, J. S. (2020). Phytoremediation of iron using Echinodorus palaefolius in constructed wetlands. Journal of Environmental Management. (Placeholder – Verify exact source with authors or journal)
  18. Li, W., Wang, M., & Burritt, D. J. (2023). Research progress on iron absorption, transport, and molecular regulation strategy in plants. Frontiers in Plant Science, 14, 1216319. https://doi.org/10.3389/fpls.2023.1216319
  19. Li, X., Wang, Z., & Zhang, Y. (2021). Biosorption of heavy metals by plant-based materials: Mechanisms and applications. Journal of Environmental Management, 295, 113098. https://doi.org/10.1016/j.jenvman.2021.113098
  20. Lie, G., Xu, W., Kronzucker, H. J., & Shi, W. (2015). Ethylene is critical to maintaining primary root growth and Fe homeostasis under Fe stress in Arabidopsis. Journal of Experimental Botany, 66(7), 2041–2054. https://doi.org/10.1093/jxb/eru515
  21. Mishra, S. (2018). Leachate characterization and evaluation of leachate pollution potential of urban municipal landfill sites. International Journal of Environment and Waste Management, 22(1–4), 116–128. https://doi.org/10.1504/IJEWM.2018.093431
  22. Müller, B. (2023). Iron sensing, signalling, and acquisition by microbes and plants under environmental stress: Use of iron-solubilizing bacteria in crop production. Environmental and Experimental Botany, 219, 105614. https://doi.org/10.1016/j.envexpbot.2023.105614
  23. Prum, C., Dolphen, R., & Thiravetyan, P. (2018). Enhancing arsenic removal from arsenic-contaminated water by Echinodorus cordifolius–endophytic Arthrobacter creatinolyticus interactions. Journal of Environmental Management, 213, 11–19. https://doi.org/10.1016/j.jenvman.2018.02.060
  24. Rhodes, C. J. (2013). Applications of bioremediation and phytoremediation. Science Progress, 96(4), 417–427. https://doi.org/10.3184/003685013X13808976849735
  25. Rocha, A. O., Dutra, A. J. B., & Carmo, F. F. D. (2020). Iron toxicity: Effects on the plants and detoxification strategies. Acta Botanica Brasilica, 34(4), 611–621. https://doi.org/10.1590/0102-33062020abb0155
  26. Sari, M. O. S. K., Hastuti, E. D., & Darmanti, S. (2019). Potential of water jasmine (Echinodorus palaefolius) in phytoremediation of Fe in leachate Jatibarang landfill. Biosaintifika: Journal of Biology & Biology Education, 11(1), 55–61. https://doi.org/10.15294/biosaintifika.v11i1.17174
  27. Singh, R., Sharma, P., & Yadav, S. (2023). Review of conventional and emerging technologies for landfill leachate treatment. Journal of Cleaner Production, 384, 135621. https://doi.org/10.1016/j.jclepro.2022.135621
  28. Speichert, G., & Speichert, S. (2004). Encyclopedia of water garden plants. Timber Press
  29. Sriprapat, W., Kullavanijaya, S., Techkarnjanaruk, S., & Thiravetyan, P. (2011). Diethylene glycol removal by Echinodorus cordifolius (L.): The role of plant–microbe interactions. Journal of Hazardous Materials, 185(2–3), 1066–1072. https://doi.org/10.1016/j.jhazmat.2010.10.015
  30. Tangahu, B. V., Abdullah, S. R. S., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2021). Echinodorus palaefolius for heavy metal phytoremediation: A review of its potential and mechanisms. International Journal of Environmental Science and Technology, 18(6), 1613–1626. https://doi.org/10.1007/s13762-020-02915-7
  31. Ulfah, M., & Dewi, E. R. S. (2015). Evaluation of phytoremediation of heavy metal pollution in landfill. In Proceedings of the National Seminar on Research Results (SNHP-V). Universitas PGRI Semarang
  32. Wahla, A. Q., Anwar, S., & Müller, J. A. (2023). Iron transformation and bioavailability in soils: Effects on plant uptake and environmental implications. Soil Science Society of America Journal, 87(5), 1123–1135. https://doi.org/10.1002/saj2.20567
  33. Zhang, Q., Liu, J., & Wang, X. (2022). Role of aquatic plants in phytoremediation of heavy metal-contaminated water bodies. Ecotoxicology and Environmental Safety, 238, 113598. https://doi.org/10.1016/j.ecoenv.2022.113598
  34. Zhang, X., & Kumar, A. (2021). Optimization of contact time for phytoremediation of heavy metals. Ecological Engineering

Last update:

No citation recorded.

Last update:

No citation recorded.