skip to main content

Sintesis Lempung Terpilar TiO2 dan Uji Kemampuan Penyisihan Zat Organik Terlarut Pada Air Lindi TPA Kampus Undip Tembalang

*Suhartana Suhartana  -  Diponegoro University, Indonesia
Atikah Ayu Janitra  -  Diponegoro University, Indonesia
Choiril Azmiyawati  -  Diponegoro University, Indonesia
Sriatun Sriatun  -  Diponegoro University, Indonesia
Open Access Copyright 2025 Greensphere: Journal of Environmental Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Pembuatan lempung terpilar TiO2 dan uji kemampuan adsorpsi dan fotokatalitik pada penghilangan senyawa organik terlarut telah dilakukan. Tujuan penelitian ini adalah membuat lempung yang diaktivasi asam dan  terpilar TiO2 serta uji performa adsorpsi-fotokatalitik pada penghilanagn senyawa organik terlarut pada air lindi dari tempat pembuangan akhir (TPA) kampus UNDIP Tembalang. Sintesis lempung terpilar TiO2 dilakukan melalui aktivasi lempung dan pilarisasi lempung. Proses aktivasi lempung menggunakan H2SO4 pada sistem refluks, kemudian dilakukan pilarisasi dengan penambahan agen pemilar lalu dikalsinasi. Lempung alam, teraktivasi, dan terpilar TiO2 dikarakterisasi menggunakan FTIR dan XRD, masing – masing untuk menentukan gugus fungsi dan mengetahui basal spacing dari ketiga lempung tersebut. Kemampuan penyisihan lempung terhadap zat organik terlarut  diukur dari konsentrasi  zat organik terlarut  sisa dalam filtrat menggunakan parameter COD, BOD, TSS, pH dan TSSHasil yang diperoleh pada penelitian ini menujukan bahwa aktivasi dan pilarisasi lempung dapat menyebabkan penurunan rasio gugus fungsi SiOH/SiOTi dan peningkatan basal spacing. Perubahan terbesar terjadi pada lempung terpilar TiO2 variasi 3 terhadap lempung alam, yakni rasio SiOH/SiOTi menurun dari 0,6773 menjadi 0,5735 dan basal spacing meningkat dari 19.1868 Å pada 2θ = 4.6º menjadi 29.1673 Å pada 2θ = 3.03º. Kemampuan optimal pada penyisihan senyawa organik terlarut yang berasal dari tempat pembuangan akhir (TPA) kampus UNDIP Tembalang  terjadi pada waktu kontak 45 menit dengan randemen 70,15 (pada lempung sebelum terpilar) – 89,8% (pada lempung sedudah terpilar TiO2).

 

Fulltext View|Download
Keywords: Lempung;TiO2; Penyisihan; Organik telarut
Funding: Universitas Diponegoro

Article Metrics:

  1. T. E. Triandhani, T. Taslimah, and S. Sriyanti, "Pilarisasi Lempung Dengan Al/Cr sebagai Adsorben Minyak Sisa Pakai," Greensphere: Journal of Environmental Chemistry, vol. 1, no. 1, pp. 13-18, May. 2021. https://doi.org/10.14710/gjec.2021.10781
  2. Bhattacharyya, K. G., SenGupta, S. dan Sarma, G. K., 2014, Interactions of the Dye, Rhodamine B with Kaolinite and Montmorillonite in Water. Applied Clay Science 99: 7-17
  3. Yuan, P., Annabi-Bergaya, F., Tao, Q., Fan, M., Liu, Z., Zhu, J., He, H. dan Chen, T., 2008, A Combined Study by Xrd, Ftir, Tg and Hrtem on the Structure of Delaminated Fe-Intercalated/Pillared Clay. Journal of Colloid and Interface Science 324(1): 142-149
  4. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M. dan Bahnemann, D. W., 2014, Understanding Tio2 Photocatalysis: Mechanisms and Materials. Chemical reviews 114(19): 9919-9986
  5. Barbosa, L. V., Marçal, L., Nassar, E. J., Calefi, P. S., Vicente, M. A., Trujillano, R., Rives, V., Gil, A., Korili, S. A. dan Ciuffi, K. J., 2015, Kaolinite-Titanium Oxide Nanocomposites Prepared Via Sol-Gel as Heterogeneous Photocatalysts for Dyes Degradation. Catalysis Today 246: 133-142
  6. Nakata, K. dan Fujishima, A., 2012, Tio 2 Photocatalysis: Design and Applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13(3): 169-189
  7. Renou S, Givaudan GJ, Poulain S, Dirassouyan F, Moulin P (2008). Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 150: 468–493
  8. Sanphoti N, Towprayoon S, Chaiprasert P, Nopharatana A (2006). The effects of leachate recirculation with supplemental water addition on methane production and waste decomposition in a simulated tropical landfill. Journal of Environmental Management, 81: 27– 35
  9. Li HS, Zhou SQ, Sun YB, Feng P, Li JD (2009). Advanced treatment of landfill leachate by a new combination process in a full–scale plant. Journal of Hazardous Materials, 172(1): 408– 415
  10. Chiang LC, Chang JE, Wen TC (1995). Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Water Research, 29 (2): 671–678.
  11. Kang YW, Hwang KY (2000). Effects of reaction conditions on the oxidation efficiency in the Fenton process.Water Research, 34(10): 2786– 2790
  12. Dollerer J, Wilderer PA (1996). Biological treatment of leachates from hazardous waste landfills using sbbr technology. Water Science and Technology, 34 (7–8): 437–444
  13. Kang YW, Hwang KY (2000). Effects of reaction conditions on the oxidation efficiency in the Fenton process.Water Research, 34(10): 2786– 2790
  14. Mohajeri S, Aziz HA, Isa MH, Zahed MA, Adlan MN (2010). Statistical optimization of process parameters for landfill leachate treatment using electro-Fenton technique. Journal of Hazardous Materials, 176: 749–758
  15. Piatkiewicz W, Biemacka E, Suchecka T (2001). A polish study: Treating landfill leachate with membranes. Filtration and Separation, 38: 22– 26
  16. Trebouet D, Schlumpf JP, Jaouen P, Quemeneur F (2001). Stabilized landfill leachate treatment by combined physicochemical–nanofiltration processes. Water Research, 35(12): 2935–2942
  17. Imai A, Iwami N, Matsushige K, Inamori Y, Sudo R (1993). Removal of refractory organics and nitrogen from landfill leachate by the microorganism-attached activated carbon fluidized bed process. Water Research, 27: 143–145
  18. Irdemez S, Demircioglu N, Yildiz YS, Bingul Z (2006). The effects of current density and phosphate concentration on phosphate removal from wastewater by elctro coagulation using aluminum and iron plate electrodes. Separation and Purification Technology, 52: 218–223
  19. Darmawan, A., Suseno, A. dan Agus Purnomo, S., 2005, Sintesis Lempung Terpilar Titania. Jurnal Kimia Sains dan Aplikasi 8(3)
  20. Gil, A., Assis, F., Albeniz, S. dan Korili, S., 2011, Removal of Dyes from Wastewaters by Adsorption on Pillared Clays. Chemical Engineering Journal 168(3): 1032-1040
  21. González-Rodríguez, B., Trujillano, R., Rives, V., Vicente, M., Gil, A. dan Korili, S., 2015, Structural, Textural and Acidic Properties of Cu-, Fe-and Cr-Doped Ti-Pillared Montmorillonites. Applied Clay Science 118: 124-130
  22. Innocenzi, P., 2003, Infrared Spectroscopy of Sol–Gel Derived Silica-Based Films: A Spectra-Microstructure Overview. Journal of Non-Crystalline Solids 316(2-3): 309-319
  23. Okoye, I. dan Obi, C., 2011, Synthesis and Characterization of Titanium Pillared Bentonite Clay Mineral. Research Journal of Applied Sciences 6(7): 443-446
  24. Yahiaoui, A., Belbachir, M. dan Hachemaoui, A., 2003, Cationic Polymerization of 1, 2-Epoxypropane by an Acid Exchanged Montmorillonite Clay in the Presence of Ethylene Glycol. International Journal of Molecular Sciences 4(11): 572-585
  25. Agnestisia, R., Komari, N. dan Sunardi, S., 2016, Adsorpsi Fosfat (Po43-) Menggunakan Selulosa Purun Tikus (Eleocharis Dulcis) Termodifikasi Heksadesiltrimetilammonium Bromida (Hdtmabr). Jurnal Sains dan Terapan Kimia 6(1): 71-86
  26. Delle Site, A., 2001, Factors Affecting Sorption of Organic Compounds in Natural Sorbent/Water Systems and Sorption Coefficients for Selected Pollutants. A Review. Journal of Physical and Chemical Reference Data 30(1): 187-439
  27. Auta, M. dan Hameed, B., 2013, Acid Modified Local Clay Beads as Effective Low-Cost Adsorbent for Dynamic Adsorption of Methylene Blue. Journal of Industrial and Engineering Chemistry 19(4): 1153-1161
  28. Wang, R., Sakai, N., Fujishima, A., Watanabe, T. dan Hashimoto, K., 1999, Studies of Surface Wettability Conversion on Tio2 Single-Crystal Surfaces. The Journal of Physical Chemistry B 103(12): 2188-2194
  29. Gupta, A., Pal, A. dan Sahoo, C., 2006, Photocatalytic Degradation of a Mixture of Crystal Violet (Basic Violet 3) and Methyl Red Dye in Aqueous Suspensions Using Ag+ Doped Tio2. Dyes and Pigments 69(3): 224-232

Last update:

No citation recorded.

Last update:

No citation recorded.