skip to main content

Evaluation of pH Effect on Conformation of Protein Interaction E-Cadherin…ADTC5 Complex: Molecular Dynamic Simulation

Moch Freskha Fauzi Royhanshah  -  Department of Chemistry, Diponegoro University, Indonesia
Khairul Anam  -  Department of Chemistry, Diponegoro University, Indonesia
Dwi Hudiyanti  -  Department of Chemistry, Diponegoro University, Indonesia
*Parsaoran Siahaan  -  Department of Chemistry, Diponegoro University, Indonesia
Open Access Copyright 2024 Greensphere: Journal of Environmental Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Abstract. Blood Brain Barrier (BBB) is a barrier located in the brain that controls the delivery of peptide drug to the brain. The difficulties of delivering drugs through BBB is because of E-Cadherin…E-Cadherin interaction that prevent drugs to pass through. ADTC5 has shown positive results to improve drug delivery through the BBB by modulating E-Cadherin…E-Cadherin interaction. Conformation are one of the factors that can affect the modulation stability between E-Cadherin…ADTC5. To analyze the conformation and stability of E-Cadherin…ADTC5 complex throughout the simulation time with pH effect, Molecular Dynamic (MD) method was used to simulate the conformational changes. The results indicate that pH 7.4, E-Cadherin…ADTC5 is the most stable conformation, with the lowest maximum radius gyration value 28.906 Å and the lowest ΔG Binding -168.244 kJ/mol. In the other hand, the most unstable conformation can be seen at pH 2.4, indicated by the positive ΔG Binding values 51,802 kJ/mol, high RMSD average at 2.8 Å and high RMSF fluctuations on residues.

 

Fulltext View|Download
Keywords: Blood Brain Barrier (BBB), E-Cadherin, ADTC5, Drug Delivery, Molecular Dynamic.
Funding: Universitas Diponegoro

Article Metrics:

  1. Abroshan, H., Akbarzadeh, H., & Parsafar, G. A. (2010). Molecular dynamics simulation and MM-PBSA calculations of sickle cell hemoglobin in dimer form with Val, Trp, or Phe at the lateral contact. Journal of Physical Organic Chemistry, 23(9), 866-877. doi: 10.1002/poc.1679
  2. Aier, I., Varadwaj, P. K., & Raj, U. (2016). Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Sci Rep, 6, 34984. doi: 10.1038/srep34984
  3. Braun, S., Krampert, M., Bodo, E., Kumin, A., Born-Berclaz, C., Paus, R., & Werner, S. (2006). Keratinocyte growth factor protects epidermis and hair follicles from cell death induced by UV irradiation, chemotherapeutic or cytotoxic agents. J Cell Sci, 119(Pt 23), 4841-4849. doi: 10.1242/jcs.03259
  4. Bungaran Mangaraja D, S. (2014). STUDI INTERAKSI ANTARA PEPTIDA SIKLIK ADTC5 (Ac-CDTPPVC-NH2) DENGAN PROTEIN E-CADHERIN MENGGUNAKAN METODE MOLECULAR DOCKING
  5. Chakshu Vats, Jaspreet Kaur Dhanjal, Sukriti Goyal, Ankita Gupta, Navneeta Bharadvaja, & Grover, A. (2015). Mechanistic analysis elucidating the relationship between Lys96 mutation in Mycobacterium tuberculosis pyrazinamidase enzyme and pyrazinamide susceptibility
  6. Cramer, C. J. (2002). Essentials of Computational Chemistry: Theories and Models
  7. Dong, X. (2018). Current Strategies for Brain Drug Delivery. Theranostics, 8(6), 1481-1493. doi: 10.7150/thno.21254
  8. Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577-8593. doi: 10.1063/1.470117
  9. Hati, J., Sumaryada, T. I., & Wahyudi, S. T. (2014). Analisis Kestabilan Protein 1GB1 Menggunakan Simulasi Dinamika Molekul
  10. I. T. Makagiansar, E. Sinaga, A. Calcagno, C. Xu, & Sia-haan, T. J. (2000). Modulation of the cellular junctionprotein E-cadherin in bovine brain microvessel endothelial cellsby cadherin peptides
  11. J.M. Anderson, & C.M. Van Itallie. (1995). Tight Junction and the molecular basis for regulation of paracellular permeability
  12. Laksitorini, M. D., Kiptoo, P. K., On, N. H., Thliveris, J. A., Miller, D. W., & Siahaan, T. J. (2015). Modulation of intercellular junctions by cyclic-ADT peptides as a method to reversibly increase blood-brain barrier permeability. J Pharm Sci, 104(3), 1065-1075. doi: 10.1002/jps.24309
  13. Laksitorini, M. D., & Siahaan, T. J. (2012). Design of Cyclic-ADT Peptides to Improve Drug Delivery to the Brain via Inhibition of E-Cadherin Interactions at the Adherens Junction
  14. Leach, A. R. (2001). Molecular Modelling Principles and Applications, Second Edition
  15. Lutz, K. L., & Siahaan, T. J. (1997). Molecular Structure of the Apical Junction Complex and Its Contribution to the Paracellular Barrier
  16. Manna, A., Laksitorini, M. D., Hudiyanti, D., & Siahaan, P. (2017). Molecular Docking of Interaction between E-Cadherin Protein and Conformational Structure of Cyclic Peptide ADTC3 (Ac-CADTPC-NH2) Simulated on 20 ns. 2017, 20(1), 7 %J Jurnal Kimia Sains dan Aplikasi. doi: 10.14710/jksa.20.1.30-36
  17. Maria Arnittali, Anastassia N. Rissanou, & Harmandaris, V. (2019). Structure Of Biomolecules Through Molecular Dynamics Simulations
  18. Marlyn Laksitorini, Vivitri D. Prasasty, Paul K. Kiptoo, & Siahaan, T. J. (2014). Pathways and Progress in Improving Drug Delivery through the Intestinal Mucosa and Blood-Brain Barriers
  19. Martinez, L. (2015). Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS One, 10(3), e0119264. doi: 10.1371/journal.pone.0119264
  20. Meller, J. (2001). Molecular Dynamics
  21. Meng, W., & Takeichi, M. (2009). Adherens junction: molecular architecture and regulation. Cold Spring Harb Perspect Biol, 1(6), a002899. doi: 10.1101/cshperspect.a002899
  22. Putra, R. A., Hudiyanti, D., Wibawa, P. J., Prasasty, V. D., & Siahaan, P. (2022). Evaluation of temperature effect on conformation of protein interaction E-cadherin..ADTC5 complex: Molecular dynamic simulation. Paper presented at the AIP Conference Proceedings 2638, 040002 (2022); https://doi.org/10.1063/5.0104026.
  23. Raquel Dias, & Jr, W. F. d. A. (2008). Molecular Docking Algorithms. Current Drug Targets, 2008, 9, 1040-1047
  24. Reva, B. A., Finkelstein, A. V., & Skolnick, J. (1998). What is the probability of a chance prediction of a protein structure with an rmsd of 6 å? Folding and Design, 3(2), 141-147. doi: 10.1016/s1359-0278(98)00019-4
  25. Tajes, M., Ramos-Fernández, E., Weng-Jiang, X., Bosch-Morató, M., Guivernau, B., Eraso-Pichot, A., . . . Muñoz, F. J. (2014). The blood-brain barrier: Structure, function and therapeutic approaches to cross it. Molecular Membrane Biology, 31(5), 152-167. doi: 10.3109/09687688.2014.937468
  26. Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chem Rev, 119(16), 9478-9508. doi: 10.1021/acs.chemrev.9b00055

Last update:

No citation recorded.

Last update:

No citation recorded.