skip to main content

OPAK FAULT DEFORMATION MONITORING USING SENTINEL-1 INSAR DATA FROM 2016-2019 IN YOGYAKARTA INDONESIA

1Pusat Studi Bencana Alam, Universitas Gadjah Mada., Indonesia

2Alumni Program Magister Teknik Geodesi UGM, Indonesia

3SMA Negeri 2 Wonosari, Yogyakarta, Indonesia

Received: 10 May 2020; Published: 4 Jul 2020.

Citation Format:
Abstract

The 2006 Yogyakarta earthquake occurred at 05.55 West Indonesia Time, May 27, 2006 with a magnitude of Mw 5.9. The earthquake had a great trauma effect for the community, because there were many fatalities, around 6,000 people died. Therefore, it is very important to conduct research to determine the deformation that is currently happening around the Opak Fault. In this research, during 2016-2019, we collected products for Sentinel-1 synthetic aperture radar interferometry (InSAR) to measure the current fault deformation. The InSAR data was processed using LiCSBAS, a time series analysis kit of open-source SAR interferometry (InSAR) that integrates with the automated Sentinel-1 InSAR processor (LiCSAR). In the processing scheme for LiCSBAS, interferograms with many unwrapping errors are automatically detected and removed via loop closure. Reliable time series and velocities are extracted using several noise indices with the help of masking. The location of the Opak Fault can be detected clearly in the result because the deformation pattern around the fault is contrary different. The west of Opak Fault shows an uplift movement, while the deformation occurred in east area of the fault shows subsidence movement.

Keywords : Opak Fault, Crustal Deformation, Sentinel-1 InSAR Data, LiCSBAS
Fulltext View|Download
Funding: Centre for the Observation and Modelling of Earthquakes, Volcanoes and Tectonics (COMET)

Article Metrics:

  1. Abercrombie, R.E., Antolik, M., Felzer, K., and Ekström, G. (2001). The 1994 Java tsunami earthquake: slip over a subducting seamount. J. Geophys. Res., Solid Earth 106, 6595–6607. https://doi.org/10.1029/2000JB900403
  2. Abidin, H.Z., Andreas, H., Meilano, I., Gamal, M., Gumilar, I., and Abdullah, C.I. (2009). Deformasi Koseismik dan Pascaseismik Gempa Yogyakarta 2006 dari Hasil Survei GPS. Jurnal Geologi Indonesia, 4(4):275-284. DOI: 10.17014/ijog.v4i4.87
  3. Agram, P., Jolivet, R., and Simons, M. Generic InSAR Analysis Toolbox (GIAnT)—User Guide. Available online: http://earthdef.caltech.edu(accessed on 27 November 2019)
  4. Atzori, S., Hunstad, I., Chini, M., Salvi, S., Tolomei, C., Bignami, C., Stramondo, S., Trasatti, E., Antonioli, A., and Boschi, E. (2009). Finite fault inversion of DInSAR coseismic displacement of the 2009 L’Aquila earthquake (central Italy). Geophys. Lett., 36. https://doi.org/10.1029/2009GL039293
  5. Hamilton, W. (1979). Tectonics of the Indonesian Region. United States Geological Survey, 1078, 345 p. https://doi.org/10.3133/pp1078
  6. Hanssen, R.F., van Leijen, F.J., van Zwieten, G.J., Bremmer, C., Dortland, S., and Kleuskens, M. Validation of existing processing chains in TerraFirma stage 2. Product validation: Validation in the Amsterdam and Alkmaar area Draft version 3. 2008. Available online: https://raw.githubusercontent.com/wiki/yumorishita/LiCSBAS/documents/Hanssen_2008.pdf(accessed on 27 January 2020)
  7. Hooper, A.J., Bekaert, D., Spaans, K., and Arikan, M. (2012). Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics, 514–517, 1–13. https://doi.org/10.1016/j.tecto.2011.10.013
  8. Lanari, R., Casu, F., Manzo, M., and Lundgren, P. (2007). Application of the SBAS-DInSAR technique to fault creep: A case study of the Hayward fault, California. Remote Sens. Environ., 109, 20–28. DOI: 10.1016/j.rse.2006.12.003
  9. Lay, T. (2015). The surge of great earthquakes from 2004 to 2014. Earth Planet. Sci. Lett. 409, 133–146. https://doi.org/10.1016/j.epsl. 2014.10.047
  10. Loveless, J.P. and Meade, B.J. (2010). Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan. J. Geophys. Res., Solid Earth 115, B02410. https://doi.org/10.1029/2008JB006248
  11. Manunta, M., Marsella, M., Zeni, G., Sciotti, M., Atzori, S., and Lanari, R. (2008). Two-scale surface deformation analysis using the SBAS-DInSAR technique: A case study of the city of Rome, Italy. Int. J. Sens. 2008, 29, 1665–1684. https://doi.org/10.1080/ 01431160701395278
  12. Massonnet, D. and Feigl, K.L. (1998). Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys., 36, 441–500. https://doi.org/10.1029/ 97RG03139
  13. Morishita, Y., Lazecky, M., Wright, T.J., Weiss, J.R., and Elliott, J.R. (2020). LiCSBAS: An Open-Source InSAR Time Series Analysis Package Integrated with the LiCSAR Automated Sentinel-1 InSAR Processor. Remote Sens., 12, 424. DOI: 10.3390/rs12030424
  14. Newcomb, K.R. and McCann, W.R. (1987). Seismic history and seismotectonics of the Sunda arc. J. Geophys. Res., Solid Earth, 92, 421–439. https://doi.org/10.1029/JB092iB01p00421
  15. Schmidt, D.A. and Bürgmann, R. (2003). Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set. J. Geophys. Res. Solid Earth, 108, 1–13. https://doi.org/10.1029/2002JB002267
  16. Trasatti, E., Casu, F., Giunchi, C., Pepe, S., Solaro, G., Tagliaventi, S., Berardino, P., Manzo, M., Pepe, A., and Ricciardi, G.P. (2008). The 2004-2006 uplift episode at Campi Flegrei caldera (Italy): Constraints from SBAS-DInSAR ENVISAT data and Bayesian source inference. Geophys. Lett., 35. DOI: 10.1029/2007GL033091
  17. Wallace, L.M. and Beavan, J. (2010). Diverse slow slip behavior at the Hikurangi subduction margin, New Zealand. J. Geophys. Res., Solid Earth 115, B12402. https://doi.org/10.1029/2010JB007717
  18. Yu, C., Li, Z., Penna, N.T., and Crippa, P. (2018). Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations. J. Geophys. Res. Solid Earth, 123, 9202–9222. https://doi.org/10.1029/ 2017JB015305
  19. Xu, B., Feng, G., Li, Z.-W., Wang, Q., Wang, C., and Xie, R. (2016). Coastal Subsidence Monitoring Associated with Land Reclamation Using the Point Target Based SBAS-InSAR Method: A Case Study of Shenzhen, China. Remote Sens., 8, 652. DOI: 10.3390/rs8080652
  20. Zeni, G., Bonano, M., Casu, F., Manunta, M., Manzo, M., Marsella, M., Pepe, A., and Lanari, R. (2011). Long-term deformation analysis of historical buildings through the advanced SBAS-DInSAR technique: The case study of the city of Rome, Italy. J. Geophys. Eng., 8, S1–S12. DOI: 10.1088/1742-2132/8/3/S01
  21. Zhou, L., Guo, J., Hu, J., Li, J., Xu, Y., Pan, Y., and Shi, M. Wuhan Surface Subsidence Analysis in 2015–2016 Based on Sentinel-1A Data by SBAS-InSAR. Remote Sens., 9, 982. DOI: 10.3390/rs9100982

Last update:

No citation recorded.

Last update:

No citation recorded.