skip to main content

VARIASI STRAIN DI SEKITAR SESAR BARIBIS BERDASARKAN DATA PENGAMATAN GPS KONTINYU (2016-2018)

Universitas Gadjah Mada, Indonesia

Received: 17 May 2019; Published: 2 Jan 2020.

Citation Format:
Abstract

Java island is one of big island with a high geodynamic condition, which in the southern part of Java Island occur subduction between Sunda Block and Indo-Australian Plate. The subduction zone forms a regional geological pattern in the maindland of Java which can be seen as fault pattern. Baribis fault is one of the active fault in the west Java, which consist west and east segment. The west segment called by inferred fault, while the east segment called by fix fault. This paper discusses about the strain variation along Baribis fault based on GNSS data, that used to see the geodynamic behavior between Indo-Australian plate and the Sunda block.

The velocity and the coordinates of observation point is calculated using weight least square method in the GAMIT and GLOBK 10.7 software, while the principle strain rate calculated using least square collocation method in GeoStrain software. The result show compression happen in the northern part of Banten province, western part of DKI Jakarta and western part of West Java province. Meanwhile the extension happened in eastern part of  DKI Jakarta till the southern part of DKI Jakarta.

Fulltext View|Download
Funding: Badan Informasi Geospasial; Badan Pertanahan Nasional; Kementrian, Riset dan Pendidikan Tinggi Republik Indonesia

Article Metrics:

  1. Abidin, H. Z., Andreas, H., Kato, T., Ito, T., Meilano, I., Kimata, F., Natawidjaya, D. H., & Harjono, H. (2009). ( INDONESIA ) USING GPS Along the Java trench the Australian – Oceanic plate is moving and pushing on to and subducting beneath the Java continental crust at a relative motion of about 70 mm / yr in NNE direction . According to Natawidjaya [ 2006 ], this , 3(2), 77–88
  2. Abidin Z., H., Andreas, H., Gumilar, I., Fukuda, Y., Pohan E., Y., & T., D. (2011). Land subsidence of Jakarta, (December). https://doi.org/10.1007/s11069-011-9866-9
  3. Altamimi, Z., Métivier, L., & Collilieux, X. (2012). ITRF2008 plate motion model. Journal of Geophysical Research: Solid Earth, 117(7), 1–14. https://doi.org/10.1029/2011JB008930
  4. Andreas, H., Usriyah, Zainal Abidin, H., & Anggreni Sarsito, D. (2017). Tidal inundation (“Rob”) investigation using time series of high resolution satellite image data and from institu measurements along northern coast of Java (Pantura). IOP Conference Series: Earth and Environmental Science, 71(1). https://doi.org/10.1088/1755-1315/71/1/012005
  5. Bock, Y. (2003). Crustal motion in Indonesia from Global Positioning System measurements. Journal of Geophysical Research, 108(B8), 2367. https://doi.org/10.1029/2001JB000324
  6. Cai, J., & Grafarend, E. W. (2007). Statistical analysis of geodetic deformation ( strain rate ) derived from the space geodetic measurements of BIFROST Project in Fennoscandia, 43, 214–238. https://doi.org/10.1016/j.jog.2006.09.010
  7. Dardji, N., Villemint, T., & Rampnoux, J. P. (1994). Paleostresses and strike-slip movement : the Cimandiri Fault Zone , West Java , Indonesia JAVA. Journal of Southeast Asian Earth Sciences, Vol. 9, No. I/2, Pp. 3-1 I, 9(I)
  8. Dong, D., Herring, T. A., & King, R. W. (1998). Estimating regional deformation from a combination of space and terrestrial geodetic data. Journal of Geodesy, 72(4), 200–214. https://doi.org/10.1007/s001900050161
  9. El-Fiky, G. S., & Kato, T. (1998). Continuous distribution of the horizontal strain in the Tohoku district, Japan, predicted by least-squares collocation. Journal of Geodynamics, 27(2), 213–236. https://doi.org/10.1016/S0264-3707(98)00006-4
  10. Goudarzi, M. A., Cocard, M., & Santerre, R. (2014). EPC: Matlab software to estimate Euler pole parameters. Springer-Verlag Berlin Heidelberg 2013, 18(1), 153–162. https://doi.org/10.1007/s10291-013-0354-4
  11. Goudarzi, M. A., Cocard, M., & Santerre, R. (2015). GeoStrain: An open source software for calculating crustal strain rates. Computers and Geosciences, 82, 1–12. https://doi.org/10.1016/j.cageo.2015.05.007
  12. Hall, R. (2014). THE ORIGIN OF SUNDALAND. Proceedings of Sundaland Resources 2014 Mgei Annual Convention, (November). Retrieved from http://searg.rhul.ac.uk/pubs/hall_2014 Sundaland origin.pdf
  13. Hamilton, W. (1979). Tectonics of the Indonesian Region. Geological Survey Professional Paper 1078, Oxford University, XXX, 352. https://doi.org/10.1016/0003-6870(73)90259-7
  14. Hanifa, N. R., Sagiya, T., Kimata, F., Efendi, J., Abidin, H. Z., & Meilano, I. (2014). Interplate coupling model off the southwestern coast of Java, Indonesia, based on continuous GPS data in 2008-2010. Earth and Planetary Science Letters, 401, 159–171. https://doi.org/10.1016/j.epsl.2014.06.010
  15. Haryanto, I. (1999). Tektonik Sesar Baribis Daerah Majalengka Jawa Barat. Institut Teknologi Bandung
  16. Herring, T. A., King, R. W., Mcclusky, S. C., & Sciences, P. (2018). Introduction to GAMIT / GLOBK. Mass. Instit. Tech., (June 2015), 1–50. Retrieved from http://www-gpsg.mit.edu/~simon/gtgk
  17. Honggorahardjo, A. P. (2009). CIMANDIRI BERDASARKAN DATA DEFORMASI Oleh : Program Studi Teknik Geodesi dan Geomatika. Institut Teknologi Bandung
  18. Koulali, A., Mcclusky, S., Susilo, S., Leonard, Y., Cummins, P., Tregoning, P., Meilano, I., Efendi, J., & Wijanarto, A. B. (2016). The kinematics of crustal deformation in Java from GPS observations : Implications for fault slip partitioning. Earth and Planetary Science Letters, 1, 1–11. https://doi.org/10.1016/j.epsl.2016.10.039
  19. Kuncoro, H. (2018). Rotation of the Sunda Block and Spatiotemporal Characteristics of the Interplate Coupling in the Java Subduction Zone, Indonesia. Department of Geophysics Graduate School of Science Tohoku University
  20. Lyard, F., Lefevre, F., Letellier, T., & Francis, O. (2006). Modelling the global ocean tides: Modern insights from FES2004. Ocean Dynamics, 56(5–6), 394–415. https://doi.org/10.1007/s10236-006-0086-x
  21. Meilano, I., Abidin, H. Z., Andreas, H., & Gumilar, I. (2012). Slip Rate Estimation of the Lembang Fault West Java from Geodetic Observation. Journal of Disaster Research Vol.7No.1, 2012, (January 2018)
  22. Michel, G. W., Qui, Y., Yuan, S., Reigber, C., Y, M. B., Reinhart, E., Simons, W., Ambrosius, B., Vigny, C., Chamot-rooke, N., Le, X., Morgan, P., & Matheussen, S. (2001). Crustal motion and block behaviour in SE-Asia from GPS measurements. Earth Planet. Sci. Lett., 187, 239– 244, 2001, 187, 239–244
  23. Moritz, H. (1972). Advanced Least-Squares Methods. Columbus. Retrieved from http://journals.ums.ac.id/index.php/bioeksperimen/article/view/313
  24. Nguyen, N., Griffin, J., Cipta, A., & Cummins, P. R. (2015). Indonesia’s Historical Earthquakes: Modelled examples for improving the national hazard map. Record 2015/23. Geoscience Australia. Canberra. https://doi.org/10.11636/Record.2015.023
  25. Prasetyadi, C., Sudarno, I., Indranadi, V., & Surono. (2011). Pola dan Genesa Struktur Geologi Pegunungan Selatan. Provinsi Daerah Istimewa Yogyakarta dan Provinsi Jawa Tengah. Jurnal Sumber Daya Geologi, 21(No. 2), 91–107
  26. Pusat Studi Gempa Nasional. (2017). Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017. Kabupaten Bandung: Pusat Penelitian dan Pengembangan Perumahan dan Permukiman Badan Penelitian dan Pengembangan Kementerian Pekerjaan Umum dan Perumahan Rakyat
  27. Quigley, M. C., Clark, D., & Sandiford, M. (2010). Tectonic geomorphology of Australia. Geological Society, London, Special Publications, 346(1), 243–265. https://doi.org/10.1144/sp346.13
  28. Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., … Karam, G. (2006). GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111(5), 1–26. https://doi.org/10.1029/2005JB004051
  29. Safitri, A. A., Meilano, I., Gunawan, E., Abidin, H. Z., Efendi, J., & Kriswati, E. (2018). Strain Variation along Cimandiri Fault , West Java Based on Continuous and Campaign GPS Observation From 2006-2016 Strain Variation along Cimandiri Fault , West Java Based on Continuous and Campaign GPS Observation From 2006-2016. In Series: Earth and Environmental Science Sci. 132 012027
  30. SIMANDJUNTAK, T. ., & BARBER, A. . (1996). Contrasting tectonic styles in the Neogene orogenic belts of Indonesia. Geol. Soc. (Lond.) Spec. Publ. 106, 185–201, (106), 185–201
  31. Supendi, P. (2016). Identifikasi Sesar Aktif di Jawa Barat Berdasarkan Penentian dan Relokasi Hiposenter Serta Mekanisme Fokus Gempabumi. Institut Teknologi Bandung
  32. Ward, S. N. (1994). Constraints On the Seismotectonics of the Central Mediterranean From Very Long Baseline Interferometry. Geophysical Journal International, 117(2), 441–452. https://doi.org/10.1111/j.1365-246X.1994.tb03943.x
  33. Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., & Wobbe, F. (2011). The Generic Mapping Tools ( GMT ) version 5 GMT 5 : A major new release of the Generic Mapping Tools School of Ocean & Earth Science & Technology , University of Hawaii at M ā noa , Honolulu , HI, (January 2015), 2–5
  34. Wibowo, S. T. (2016). Penentuan Metode Pemodelan Deformasi Komponen Sekuler Wilayah Indonesia Berdasarkan Data Pengamatan Geodetik. Institut Teknologi Bandung. Institut Teknologi Bandung
  35. Wu, Y.-Q., Jiang, Z.-S., Yang, G.-H., Fang, Y., & Wang, W.-X. (2009). The Method of GPS Strain Calculation in Whole Mode Using Least Square Collocation on Sphere Surface and Its Application. Chinese Journal of Geophysics, 52(4), 754–761. https://doi.org/10.1002/cjg2.1398
  36. Wu, Y., Jiang, Z., Yang, G., Wei, W., & Liu, X. (2011). Comparison of GPS strain rate computing methods and their reliability. Geophysical Journal International, 185(2), 703–717. https://doi.org/10.1111/j.1365-246X.2011.04976.x

Last update:

No citation recorded.

Last update:

No citation recorded.