skip to main content

Visualisasi Pola Kepadatan Penduduk di Daerah Istimewa Yogyakarta menggunakan Volunteer Geospatial Data

Universitas Gadjah Mada, Indonesia

Received: 19 Oct 2018; Published: 5 Dec 2018.

Citation Format:
Abstract

Open Street Map (OSM) dan GeoNames adalah sumber gasetir global yang diperoleh secara partisipatif. Makna partisipatif disini adalah pengguna dapat memperoleh, menambahkan dan melakukan perbaikan terhadap data secara sukarela. Pengguna tidak dikenakan biaya serta tidak dibatasi oleh tempat dan waktu. Data yang diperoleh dari partisipasi pengguna tersebut dikenal dengan istilah Volunteer Geospatial Information (VGI). Kemudahan dalam memperoleh data spasial tersebut memudahkan pengguna dalam mengaplikasikan berbagai analisis, salah satunya adalah analisis pola. Berdasarkan hal tersebut, makalah ini bertujuan untuk mengilustrasikan pola kepadatan penduduk di Daerah Istimewa Yogyakarta menggunakan data OSM dan GeoNames. Gasetir pada GeoNames dengan tipe ‘Populated Places’ dan tipe data ‘Building’ pada OSM diplot sebagai  data dengan tipe titik. Berdasarkan hasil plotting, setiap area memiliki jumlah titik gasetir yang berbeda sehingga menghasilkan perbedaan densitas titik. Selanjutnya, pola densitas berdasarkan data GeoNames dan OSM dibandingkan dengan data kepadatan penduduk yang diperoleh dari Badan Pusat Statistik.

Fulltext View|Download

Article Metrics:

  1. Acheson, E., De Sabbata, S., & Purves, R. S. (2017). A quantitative analysis of global gazetteers: Patterns of coverage for common feature types. Computers, Environment and Urban Systems, 64, 309–320. http://doi.org/10.1016/j.compenvurbsys.2017.03.007
  2. Acheson, E., Villette, J., Volpi, M., & Purves, R. S. (2017). Gazetteer matching for natural features in Switzerland. In Proceedings of the 11th Workshop on Geographic Information Retrieval (p. 11). ACM
  3. Flatow, D., Naaman, M., Xie, K. E., Volkovich, Y., & Kanza, Y. (2015). On the accuracy of hyper-local geotagging of social media content. In Proceedings of the Eighth ACM International Conference on Web Search and Data Mining (pp. 127–136). ACM
  4. Fung, I. C. H., Duke, C. H., Finch, K. C., Snook, K. R., Tseng, P. L., Hernandez, A. C., … Tse, Z. T. H. (2016). Ebola virus disease and social media: A systematic review. American Journal of Infection Control, 44(12), 1660–1671. http://doi.org/10.1016/j.ajic.2016.05.011
  5. Goodchild, M. F. (2007). Citizens as sensors: The world of volunteered geography. GeoJournal, 69(4), 211–221. http://doi.org/10.1007/s10708-007-9111-y
  6. Graham, M., & De Sabbata, S. (2015). Mapping information wealth and poverty: the geography of gazetteers. Environment and Planning A, 47(6), 1254–1264. http://doi.org/10.1177/0308518X15594899
  7. Gu, Y., Qian, Z., & Chen, F. (2016). From Twitter to detector: Real-time traffic incident detection using social media data. Transportation Research Part C: Emerging Technologies, 67, 321–342. http://doi.org/10.1016/j.trc.2016.02.011
  8. Haklay, M. (2010). How good is volunteered geographical information? A comparative study of OpenStreetMap and ordnance survey datasets. Environment and Planning B: Planning and Design, 37(4), 682–703. http://doi.org/10.1068/b35097
  9. Neis, P., Zielstra, D., & Zipf, A. (2011). The Street Network Evolution of Crowdsourced Maps: OpenStreetMap in Germany 2007–2011. Future Internet, 4(4), 1–21. http://doi.org/10.3390/fi4010001
  10. Ouma, P. O., Maina, J., Thuranira, P. N., Macharia, P. M., Alegana, V. A., English, M., … Snow, R. W. (2018). Access to emergency hospital care provided by the public sector in sub-Saharan Africa in 2015: a geocoded inventory and spatial analysis. The Lancet Global Health, 6(3), e342–e350. http://doi.org/10.1016/S2214-109X(17)30488-6
  11. Stock, K. (2018). Mining location from social media: A systematic review. Computers, Environment and Urban Systems, 71(March), 209–240. http://doi.org/10.1016/j.compenvurbsys.2018.05.007
  12. Su, S., Wan, C., Hu, Y., & Cai, Z. (2016). Characterizing geographical preferences of international tourists and the local influential factors in China using geo-tagged photos on social media. Applied Geography, 73, 26–37. http://doi.org/10.1016/j.apgeog.2016.06.001
  13. Wang, Z., & Zipf, A. (2017). Using Openstreetmap Data to Generate Building Models with Their Inner Structures for 3D Maps. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci, 2, W4
  14. Wendel, J., Simons, A., Nichersu, A., & Murshed, S. M. (2017). Rapid development of semantic 3D city models for urban energy analysis based on free and open data sources and software. In Proceedings of the 3rd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics (p. 15). ACM
  15. Zhou, X., Xu, C., & Kimmons, B. (2015). Detecting tourism destinations using scalable geospatial analysis based on cloud computing platform. Computers, Environment and Urban Systems, 54, 144–153. http://doi.org/10.1016/j.compenvurbsys.2015.07.006

Last update:

No citation recorded.

Last update:

No citation recorded.