skip to main content

Pertumbuhan dan Kandungan Klorofil Mangrove Rhizophora Stylosa Griff pada Salinitas yang Berbeda

Program Studi Biologi, Fakultas Sains dan Matematika, Universitas Diponegoro, Semarang, Jl. Prof. Jacob Rais, Tembalang, Semarang 50275, Indonesia

Open Access Copyright 2024 Buletin Anatomi dan Fisiologi

Citation Format:
Abstract

Permasalahan yang dialami vegetasi mangrove adalah populasinya yang kian menyusut drastis. Pengujian pertumbuhan dan kandungan klorofil R. stylosa harus dilakukan agar proses rehabilitasi di alam liar bisa sesuai dengan kondisi salinitas yang ada. Penelitian ini dilakukan dengan Rancangan Acak Lengkap (RAL). Penanaman R. stylosa dilakukan menggunakan ember yang diberi larutan salinitas dengan variasi: 15 ppt, 20 ppt, 25 ppt, dan 30 ppt masing-masing tiga kali ulangan. Parameter penelitian adalah: diameter batang, tinggi batang, jumlah daun, luas daun, dan kandungan klorofil. Data dianalisis dengan ANOVA, apabila terdapat perbedaan nyata maka dilakukan uji DMRT dengan kepercayaan 95%. Hasil ANOVA menunjukkan bahwa tidak ada perbedaan nyata antar perlakuan pada pertumbuhan diameter batang, tinggi batang, jumlah daun, dan luas daun, namun terdapat kecenderungan hasil terbaik terdapat pada salinitas 15 ppt dengan diameter batang (1,68 mm2), tinggi batang (15,53 cm), jumlah daun (5,33), dan luas daun (1650,79 mm2). Hasil uji ANOVA pada kandungan klorofil menunjukkan bahwa terdapat perbedaan nyata antar perlakuan. Hasil uji DMRT menunjukkan bahwa kandungan klorofil paling tinggi terdapat pada salinitas 15 ppt (11,015 mg/L).

 

 

The problem experienced by mangrove vegetation is that its population is decreasing drastically. Testing of the growth and chlorophyll content of R. stylosa must be carried out so that the rehabilitation process in the wild can be in accordance with existing salinity conditions. This research was conducted in a completely randomised design (CRD). Planting of R. stylosa was done using a bucket that was given a salinity solution with variations: 15 ppt, 20 ppt, 25 ppt, and 30 ppt each with three replications. The research parameters were stem diameter, stem height, number of leaves, leaf area, and chlorophyll content. Data were analysed by ANOVA, if there were significant differences then DMRT test was conducted with 95% confidence. ANOVA results showed that there were no significant differences between treatments on the growth of stem diameter, stem height, number of leaves, and leaf area, but there was a tendency that the best results were in 15 ppt salinity with stem diameter (1.68 mm2), stem height (15.53 cm), number of leaves (5.33), and leaf area (1650.79 mm2). ANOVA test results on chlorophyll content showed that there were significant differences between treatments. The DMRT test results showed that the highest chlorophyll content was found at 15 ppt salinity (11.015 mg/L).

Fulltext View|Download
Keywords: filtrasi; cekaman osmotik; turgor; fotosintesis
Funding: Fakultas Sains dan Matematika under contract 24.G/UN7.F8/PP/II/2023

Article Metrics:

  1. Akhoundnejad, Y., Altuntas, O., & Dasgan, H. Y. (2018). Silicon-Induced Salinity Tolerance Improves Photosynthesis, Leaf Water Status, Membrane Stability, and Growth in Pepper (Capsicum annuum L.). HortScience, 53(12), 1820–1826. https://doi.org/10.21273/HORTSCI13411-18
  2. Armis, A. (2017). Analisis Salinitas Air pada Down Stream dan Middle Stream Sungai Pampang Makassar [Journal]. Universitas Hasanuddin
  3. Cackett, L., Cannistraci, C. V., Meier, S., Ferrandi, P., Pěnčík, A., Gehring, C., Novák, O., Ingle, R. A., & Donaldson, L. (2022). Salt-Specific Gene Expression Reveals Elevated Auxin Levels in Arabidopsis thaliana Plants Grown Under Saline Conditions. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.804716
  4. Ebrahimi, P., Shokramraji, Z., Tavakkoli, S., Mihaylova, D., & Lante, A. (2023). Chlorophylls as Natural Bioactive Compounds Existing in Food By-Products: A Critical Review. In Plants (Vol. 12, Issue 7). MDPI. https://doi.org/10.3390/plants12071533
  5. Encarnação, T., Burrows, H. D., Pais, A. A. C. C., Campos, M. G., Pais, A. C., & Kremer, A. (2012). Effect of N and P on the Uptake of Magnesium and Iron and on the Production of Carotenoids and Chlorophyll by the Microalgae Nannochloropsis sp. In Article in Journal of Agricultural Science and Technology (Vol. 2). https://www.researchgate.net/publication/279995875
  6. Farooq, M., Gogoi, N., Hussain, M., Barthakur, S., Paul, S., Bharadwaj, N., Migdadi, H. M., Alghamdi, S. S., & Siddique, K. H. M. (2017). Effects, Tolerance Mechanisms and Management of Salt Stress in Grain Legumes. In Plant Physiology and Biochemistry (Vol. 118, pp. 199–217). Elsevier Masson SAS. https://doi.org/10.1016/j.plaphy.2017.06.020
  7. Hameed, A., Rasheed, A., Gul, B., & Khan, M. A. (2014). Salinity Inhibits Seed Germination of Perennial Halophytes Limonium stocksii and Suaeda fruticosa by Reducing Water Uptake and Ascorbate Dependent Antioxidant System. Environmental and Experimental Botany, 107, 32–38. https://doi.org/10.1016/j.envexpbot.2014.04.005
  8. Koubouris, G. C., Tzortzakis, N., Kourgialas, N. N., Darioti, M., & Metzidakis, I. (2015). Growth,
  9. Photosynthesis and Pollen Performance in Saline Water Treated Olive Plants Under High Temperature. International Journal of Plant Biology, 6(1). https://doi.org/10.4081/pb.2015.6038
  10. Kumar, S., Li, G., Yang, J., Huang, X., Ji, Q., Liu, Z., Ke, W., & Hou, H. (2021). Effect of Salt Stress on Growth, Physiological Parameters, and Ionic Concentration of Water Dropwort (Oenanthe javanica) Cultivars. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.660409
  11. Kurniadi. (2012). Peran Aquaporin dalam Pengaturan Transportasi Air. Jurnal Kesehatan Prima, 6(2), 976–981
  12. Kurniawan, P. (2018). Analisa Pengaruh Tingkat Salinitas Genangan Akibat Pasang Surut terhadap Karakteristik dan Stabilitas Lapis Permukaan Perkerasan Beraspal. Jurnal Teknik Sipil, 18(1), 1–16
  13. Lu, Y., & Fricke, W. (2023). Salt Stress—Regulation of Root Water Uptake in a Whole-Plant and Diurnal Context. In International Journal of Molecular Sciences (Vol. 24, Issue 9). MDPI. https://doi.org/10.3390/ijms24098070
  14. Maeda, K., Johkan, M., Tsukagoshi, S., & Maruo, T. (2020). Effect of Salinity on Photosynthesis and Distribution of Photosynthates in the Japanese Tomato ‘cf momotaro york’ and the Dutch Tomato ‘endeavour’ with Low Node-Order Pinching and a High-Density Planting System. Horticulture Journal, 89(4), 454–459. https://doi.org/10.2503/hortj.UTD-167
  15. Noprianti, M., Andi Nur Samsi, & Alin Liana. (2018). Studi Pemanfaatan Mangrove Rhizophora Stylosa oleh Masyarakat Pulau Bauluang Sulawesi Selatan. Jurnal Sains Dan Pendidikan Biologi, 2(1), 9–13
  16. Quamruzzaman, M., Manik, S. M. N., Shabala, S., & Zhou, M. (2021). Improving Performance of Salt-Grown Crops by Exogenous Application of Plant Growth Regulators. In Biomolecules (Vol. 11, Issue 6). NLM (Medline). https://doi.org/10.3390/biom11060788
  17. Ritohardoyo, S., & Galuh Bayu Ardi. (2014). Arahan Kebijakan Pengelolaan Hutan Mangrove: Kasus Pesisir Kecamatan Teluk Pakedai, Kabupaten Kuburaya, Provinsi Kalimantan Barat. Jurnal Geografi, 11(1), 43–57
  18. Sosnowski, J., Truba, M., & Vasileva, V. (2023). The Impact of Auxin and Cytokinin on the Growth and Development of Selected Crops. In Agriculture (Switzerland) (Vol. 13, Issue 3). MDPI. https://doi.org/10.3390/agriculture13030724
  19. Tarigan, D. M., Irna Syofia, & Sri Utami. (2017). Chlorophyll Content of Wheat Plant on Some Nitrogen Interaction with Potassium in the Karo Highlands. 7th AIC-ICMR on Health and Life Sciences, 300–306
  20. Umayah, S., Gunawan, H., Biologi, J., Matematika, F., Ilmu, D., & Alam, P. (2016). Tingkat Kerusakan Ekosistem Mangrove di Desa Teluk Belitung Kecamatan Merbau Kabupaten Kepulauan Meranti. In Jurnal Riau Biologia (Vol. 1, Issue 4)
  21. Yan, S., Gao, Y., Tian, M., Tian, Y., & Li, J. (2021). Comprehensive Evaluation of Effects of Various Carbon-Rich Amendments on Tomato Production under Continuous Saline Water Irrigation: Overall Soil Quality, Plant Nutrient Uptake, Crop Yields and Fruit Quality. Agricultural Water Management, 255. https://doi.org/10.1016/j.agwat.2021.106995

Last update:

No citation recorded.

Last update:

No citation recorded.