skip to main content

The effect of variations air discharge with the addition of biodryed Solid Recovered Fuel (SRF) in biodrying process of urban waste on Water Content Parameters and Calorific Value

Humam Muhammad Izzudin  -  Universitas Diponegoro, Indonesia
*Nurandani Hardyanti  -  Universitas Diponegoro, Indonesia
Badrus Zaman  -  Universitas Diponegoro, Indonesia
Ilmi Tri Zenith  -  Universitas Diponegoro, Indonesia

Citation Format:
Abstract

Indonesia as the 5th position of the largest waste produce in the world contributes around 65,2 million tons of waste. From that number of wastes, most of the waste almost didn’t manage nicely. Data from BPS shows that only 7% of waste is able to be recycled. Therefore, the concept of waste to energy must become a reality to answer critical problems in the solid waste management system in developing countries. Solid Recovered Fuel (SRF) is considered as the best option to reducing the bulk volume of the waste. SRF consists of non-hazardous waste fractions submitted to certain processing to obtain better quality fuel for commercialization and use in industry or combustion plants to produce energy. The quality of this SRF depends on calorific value, water content, temperature of the product etc. In this scenario, the best opinion to increase the quality of this SRF is biodrying process, where the biological heat energy is effectively channelized for drying purpose to reduce the water content of the waste and increase the calorific value of SRF product.

Fulltext View|Download
Keywords: Biodrying, Solid Recovered Fuel (SRF), Temperature, Calorific Value, and Water Content
  1. Ab Jalil, N., et al. (2016). "Biodrying of municipal solid waste under different ventilation periods." Environmental Engineering Research 21(2): 145-151
  2. Alves, O., et al. (2021). "Effects of dry and hydrothermal carbonisation on the properties of solid recovered fuels from construction and municipal solid wastes." Energy Conversion and Management 237: 114101
  3. Aziz, A. and S. F. S. Gumilang (2018). "Rancangan fitur aplikasi pengelolaan administrasi dan bisnis bank sampah di Indonesia." Konferensi Nasional Sistem Informasi (KNSI) 2018
  4. Beyene, H. D., et al. (2018). "Current updates on waste to energy (WtE) technologies: a review." Renewable Energy Focus 24: 1-11
  5. Bilgin, M. and Ş. Tulun (2015). "Biodrying for municipal solid waste: volume and weight reduction." Environmental technology 36(13): 1691-1697
  6. Chen, Y.-C., et al. (2022). "Solid fuel recovered from food waste dechlorination: Proof of concept and cost analysis." Journal of Cleaner Production 360: 132240
  7. Fahrurazy, I. (2021). "Rekaya Mesin Konversi Sampah Plastik Menjadi Minyak Mentah Dengan Variasi Sampah Plastik Jenis Polypropilena (PP) dan Polyethylene Therephtalate (PET)." JURUTERA-Jurnal Umum Teknik Terapan 8(02): 7-13
  8. Marpaung, S. C. Y. M. (2023). "Implementasi Kebijakan Menteri Perdagangan Republik Indonesia Nomor 31 Tahun 2016 Dalam Perspektif Keamanan Lingkungan." Journal of International Relations Diponegoro 9(1): 282-293
  9. Nasrullah, M., et al. (2014). "Mass, energy and material balances of SRF production process. Part 1: SRF produced from commercial and industrial waste." Waste Management 34(8): 1398-1407
  10. Psomopoulos, C. S., et al. (2009). "Waste-to-energy: A review of the status and benefits in USA." Waste management 29(5): 1718-1724
  11. Sen, R. and A. P. Annachhatre (2015). "Effect of air flow rate and residence time on biodrying of cassava peel waste." International Journal of Environmental Technology and Management 18(1): 9-29
  12. Song, X., et al. (2017). "Optimization of bio-drying of kitchen waste: inoculation, initial moisture content and bulking agents." Journal of material cycles and waste management 19: 496-504
  13. Soriano, C., et al. (2020). Addition of Solid Recovered Fuel (SRF) to the Bio-drying Process and the Effects of Variation in Air Discharge on Temperature Parameters and Urban Waste Water Content. IOP Conference Series: Earth and Environmental Science, IOP Publishing
  14. Szydełko, A., et al. (2022). "Effects of calcium, sodium and potassium on ash fusion temperatures of solid recovered fuels (SRF)." Waste Management 150: 161-173
  15. Tom, A. P., et al. (2016). "Biodrying process efficiency:-significance of reactor matrix height." Procedia Technology 25: 130-137
  16. Tom, A. P., et al. (2016). "Biodrying process: A sustainable technology for treatment of municipal solid waste with high moisture content." Waste management 49: 64-72
  17. Widarti, B. N., et al. (2015). "Pengaruh rasio C/N bahan baku pada pembuatan kompos dari kubis dan kulit pisang." Jurnal Integrasi Proses 5(2)
  18. Wu, Z.-Y., et al. (2018). "Biodrying performance and bacterial community structure under variable and constant aeration regimes during sewage sludge biodrying." Drying Technology 36(1): 84-92
  19. Yang, B., et al. (2017). "Advances in biodrying technologies for converting organic wastes into solid fuel." Drying Technology 35(16): 1950-1969
  20. Zhang, D., et al. (2018). "Co-biodrying of sewage sludge and organic fraction of municipal solid waste: Role of mixing proportions." Waste Management 77: 333-340
  21. Zhang, H.-Y., et al. (2018). "Lignocellulose biodegradation in the biodrying process of sewage sludge and sawdust." Drying Technology 36(3): 316-324
  22. Ziadati Husna, F. (2018). ANALISIS PARAMETER SUHU, KADAR AIR, RASIO C/N, DAN SELULOSA AKIBAT VARIASI DEBIT UDARA PADA PROSES BIODRYING SAMPAH PERKOTAAN DENGAN PENAMBAHAN MIKROORGANISME BIODRIED, Unive

Last update:

No citation recorded.

Last update:

No citation recorded.