skip to main content

Fitoremediasi Lahan Tercemar Pb menggunakan Helianthus annuus L. dengan Bacillus subtilis dan Pseudomonas aeruginosa

*C. N. Al-Hayah  -  Agroecotechnology, Universitas Diponegoro, Indonesia
S. Budiyanto  -  Agroecotechnology, Universitas Diponegoro, Indonesia
E. Fuskhah  -  Agroecotechnology, Universitas Diponegoro, Indonesia

Citation Format:
Abstract

This study aimed to evaluate the effect of adding various doses and types of bacteria on the growth and ability of sunflower plants to absorb Pb from polluted land. The research was carried out in the study used a factorial experiment with a completely randomized design (CRD). The first factor is the dose of bacteria consisting of (A) 25 ml/plant, 50 ml/plant, and 75 ml/plant. The second factor was the type of bacteria (B), which consisted of Bacillus subtilis, Pseudomonas aeruginosa, and Bacillus subtilis and Pseudomonas aeruginosa. The observation parameters included plant height, number of leaves, root length, dry matter, Pb levels in the soil, and Pb levels in the leaves, stems, and roots. The data obtained were processed using Analysis of Variance, followed by the Least Significant Difference Test at the 5% level. There is an interaction between the dose of bacteria and the type of bacteria on the parameters of the number of leaves, and root length. The dose of bacteria affects root length, Pb levels in leaves, and Pb levels in stems. The best bacterial dose was 75 ml. The treatment of bacterial species did not affect plant growth, Pb uptake in plants, and Pb adsorption in soil

 

Keywords: Bacillus subtilis, Pseudomonas aeruginosa, Pb

Fulltext View|Download
Funding: niversitas Diponegoro under contract MetMu123456

Article Metrics:

  1. Alaboudi, K., A. B. Ahmed. Dan G. Brodie. 2018. Phytoremediation of Pb dan Cd contaminated soil by using sunflower (Helianthus annuus) plant. J. Annals of Agriculture Sciences, 66(1):123-127.doi: https://doi.org/10.1016/j.aoas.2018.05.007
  2. Benizri, E., S. Lopez, A. Durand, dan P. S. Kidd. 2021. Diversity and role of endophytic dan rhizosphere microbes associated with hyperaccumulator plants during metal accumulation. J. Agromining: Farming for Metals, Mineral Resource Review: 239 – 279
  3. BPS. 2022. Luas Panen dan Produksi Padi di Indonesia 2021. Badan Pusat Statistik. Jakarta
  4. Djaenudin, D., Marwan, H., Subagjo, H., dan A. Hidayat. 2011. Petunjuk Teknis Evaluasi Lahan Untuk Komoditas Pertanian. Balai Besar Litbang Sumberdaya Lahan Pertanian, Badan Litbang Pertanian, Bogor
  5. Farooqi, Z. U. R., M.M. Hussain, M A. Ayub, A. A. Qadir, dan P. Ilic. 2022. Phytoremediation Biotechnological Strategies for Promoting Invigorating Environs. Academic Press Elsevier. London
  6. Glick, B. R. 2010. Using soil bacteria facilitates phytoremediation. J. Elsavier Biotechnology Advance, 28:367-374. doi: https://doi.org/10.1016/j.biotechadv.2010.02.001
  7. Hidayat, B. 2015. Remediasi tanah tercemar logam berat dengan menggunakan biochar. J. Pertanian Tropik, 2(1):31-41
  8. Hindersah, R. dan J. Matheus. 2015. Respons pertumbuhan vegetatif jagung di tailing tambang timah terkontaminasi kadmium setelah inokulasi bakteri indigenus. J. Agrologia, 4(1):8-14
  9. KLH dan Dalhousie, University Canada. 1992. Environmental Management in Indonesia. Report of Soil Quality Standars for Indonesia. Jakarta
  10. KLHK. 2020. Statistik 2020 Kementerian Lingkungan Hidup dan Kehutanan. Lingkungan Hidup dan Kehutanan. Jakarta
  11. Kong, Z., dan B. R. Glick. 2022. The role of plant growth-promoting bacteria in metal phytoremediation. J. Advances in microbial physiology, 71:97-132. doi: https://doi.org/10.1016/bs.ampbs.2017.04.001
  12. Kumar, C.P. Ms, A. K. Chaturvedi, A. A.Shabnam, G. Subrahmanyam, R. Monda, dan K. K. Yadav. 2020. Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches Int. J. of Environmental Research and Public Health, 17(7):2179. doi: https://doi.org/10.3390/ijerph17072179
  13. Li, C., J. Yang, dan D. Wang. 2020. Phytoremediation of uranium and cadmium contaminated soils by sunflower [Helianthus annuus (L.)] enhanced with biodegradable chelating agents. J. of Cleaner Production, 263:121491.doi: https://doi.org/10.1016/j.jclepro.2020.121491
  14. Mohrazi, A., R. Ghasemi-Fasaei, A. Mojiri dan S.S. Shirazi. 2023. Investigating an electro-bio-chemical phytoremediation of multi-metal polluted soil by maize and sunflower using RSM-based optimization methodology. J. Environmental and Experimental Botany, 211: 105352. doi: https://doi.org/10.1016/j.envexpbot.2023.105352
  15. Paliwal, H. B., N. Gupta, dan A. James. 2013. Study accumulation of lead in sunflower [Helianthus annuus (L.)]. J. of Industrial Pollution Control, 30(1):91-96
  16. Pasricha, S., V. Mathur, A. Garg, S. Lenka, K. Verma dan S. Agarwal. 2021. Molecular mechanisms underlying heavy metal uptake, translocation and tolerance in hyperaccumulators-an analysis Heavy metal tolerance in hyperaccumulators. J. Environmental Challenges, 4: 100197. doi: https://doi.org/10.1016/j.envc.2021.100197
  17. Pinaria, A. G., dan B. H. Assa. 2017. Jamur Patogen Tanaman Terbawa Tanah. Media Nusa Creative. Malang
  18. Setiadi, A. D., B. Rumhayati, dan C. Retnaningdyah. 2017. Profil fraksi geokimia logam Cd, Pb, dan Zn pada sedimen wilayah reklamasi lumpur Sidoarjo di muara sungai Porong Sidoarjo. J. Natural B., 4(1):11-22
  19. Sorour, A. A., H. Khairy, dan H. A. H. Zaghloul.2022. Microbe-plant interaction as a sustainable tool for mopping up heavy metal contaminated sites. J. BMC Microbiology, 22:174. doi: https://doi.org/10.1186/s12866-022-02587-x
  20. Tiquia-Arashiro, S.M. 2018. Lead absorption mechanisms in bacteria as strategies for lead bioremediation. J. Applied Microbiology and Biotechnology, 102(13):5437-5444
  21. U.S.EPA. 2020. Lead in Soil. U.S. EPA Office of Research and Development. EPA/625/R-00/012. Region III. Ohio
  22. Windiastuti, E., M. H. Ramadhan, V. T. Manik., F. Kurniati, dan Y. Sunarya. 2023. Response of [Cucumis sativus (L)].’s growth and harvest to variations in soaking time and plant growth promoting Rhizobacteria concentration. J. Biologi Tropis, 23(3):164-172
  23. Wrobel, M., W. Sliwakowski, P. Kowalczyk, K. Kramkowski, dan J. Dobrzynski. Bioremediation of heavy metal by genus Bacillus. J. Int. Environ. Res. Public Health, 20(6):4964. doi: https://doi.org/10.3390/ijerph20064964
  24. Zulkernain, N. H., T. Uvarajan, dan C. C. Ng. 2023. Roles and significance of chelating agents for potentially toxic elements (PTEs) phytoremediation in soil: A review. J. of Environmental Management. 341:117926. doi: https://doi.org/10.1016/j.jenvman.2023.117926

Last update:

No citation recorded.

Last update:

No citation recorded.