skip to main content

Fine Bubble Technology in Aquaculture: A Review of Enhanced Nutrient Uptake

Departemen Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Padjadjaran, Jl. Raya Bandung–Sumedang Km 21, Hegarmanah, Kec. Jatinangor, Kab. Sumedang, Jawa Barat 45363, Indonesia Tel/Fax: +62 22 842 8888, Indonesia

Open Access Copyright 2025 Achmad Syah Nizar El Java, Kiki Haetami, Triwidiyanti Rosmayani Putri, Agustinus Putra, Syifa Nur Rizkia, Jihan Goenisa, Najma Humaira

Citation Format:
Abstract

Freshwater aquaculture in Indonesia encounters critical challenges related to production efficiency and environmental sustainability, where feed costs account for 60–70% of operational expenses, and conventional aeration systems achieve only 8–15% oxygen transfer efficiency while inducing excessive turbulence that stresses fish. This study aims to systematically review fine bubble technology applications to improve nutrient absorption efficiency in freshwater aquaculture systems. A comprehensive literature search was performed across ScienceDirect, SpringerLink, PubMed, Google Scholar, and nationally accredited journals from 2013 to 2024 using the keywords “fine bubble,” “microbubble,” “nanobubble,” and “nutrient absorption” with Boolean operators. Selected articles focused on peer-reviewed studies addressing fine bubble implementations and nutrient absorption mechanisms in freshwater aquaculture. The findings reveal that fine bubble technology, comprising microbubbles (10–50 μm) and nanobubbles (<1 μm), demonstrates outstanding performance by achieving 85–95% oxygen transfer efficiency compared to conventional systems (8–15%), maintaining dissolved oxygen levels up to 25.39 mg/L while reducing ammonia by 83.33%. In recirculating aquaculture systems (RAS), this technology significantly enhanced biomass growth, improved feed conversion ratios from 1.8 to 1.4, reduced energy consumption by 30–40% (1.2–2.0 kWh/kg O₂ vs. 2–4 kWh/kg O₂), and ensured uniform oxygen distribution with minimal turbulence stress. Practically, these results suggest that fine bubble technology holds transformative potential for sustainable freshwater aquaculture intensification by optimizing nutrient uptake efficiency, improving water quality, and reducing energy costs. This technology is highly recommended for application in RAS and aquaponic systems, while further research is needed to develop cost-effective solutions for small-scale farmers and integrate IoT-based monitoring systems to support broader commercial scalability.


Fulltext View|Download

Article Metrics:

  1. Ali, B.A., A. Mishra. 2022. Effects of dissolved oxygen concentration on freshwater fish: A review. International Journal of Fisheries and Aquatic Studies, 10(4): 113–127. https://doi.org/10.22271/fish.2022.v10.i4b.2693
  2. Astari, B., T. Budiardi, I. Effendi, T. Bodur, D. Budi, S. Ismi. 2025. The effect of aeration rates on abalone (Haliotis squamata) juvenile culture in recirculating aquaculture system. Invertebrate Reproduction & Development, 69: 41. https://doi.org/10.1080/07924259.2024.2435462
  3. Cadorin, D.I., M.F.O. da Silva, K. Masagounder, D.M. Fracalossi. 2021. Interaction of feeding frequency and feeding rate on growth, nutrient utilization, and plasma metabolites of juvenile genetically improved farmed Nile tilapia, Oreochromis niloticus. Journal of the World Aquaculture Society, 52(5): 1116–1128. https://doi.org/10.1111/jwas.12833
  4. Chirwa, W., P. Li, H. Zhan, Y. Zhang, Y. Liu. 2024. Application of fine bubble technology toward sustainable agriculture and fisheries. Journal of Cleaner Production, 449: 141629. https://doi.org/10.1016/j.jclepro.2024.141629
  5. Cruz, M.A., L.M. Santos, P.J. Rodriguez. 2023. Experimental characterization of fine pore aerators for enhanced oxygen transfer in aquaculture systems. Chemical Engineering Science, 278: 118994
  6. Guerreiro, I., A. Couto, J.A. Perez, T.A. Oliva, P. Enes. 2015. Gut morphology and hepatic oxidative status of European sea bass (Dicentrarchus labrax) juveniles fed plant feedstuffs or fishmeal-based diets supplemented with short-chain fructo-oligosaccharides and xylo-oligosaccharides. British Journal of Nutrition, 114(12): 1975-1984. DOI: 10.1017/S0007114515003773
  7. Gule, T.T., A. Geremew. 2022. Dietary strategies for better utilization of aquafeeds in tilapia farming. Aquaculture Nutrition, 28(1): 123–135. https://doi.org/10.1111/anu.13567
  8. Hamad, F.A., M.S. Al-Zaidi, K.R. Ahmad. 2023. Performance evaluation of twin-Venturi aerator for microbubble generation in aquaculture systems. Journal of Environmental Chemical Engineering, 12(5): 113927. https://doi.org/10.1016/j.ces.2023.118994
  9. Heriyati, E., R. Rustadi, alim Isnansetyo, B. Triyatmo. 2020. Uji Aerasi Microbubble dalam Menentukan Kualitas Air, Nilai Nutrition Value Coefficient (NVC), Faktor Kondisi (K) dan Performa pada Budidaya Nila Merah (Oreocrhomis Sp.). Jurnal Pertanian Terpadu, 8(1): 27-41. https://doi.org/10.36084/jpt.v8i1.232
  10. Joni, I.M., U. Subhan, E.S. Hanam, S.Y. Azhary, L.H. Pratopo, W. Hermawan, M. Miranti, C. Panatarani. 2020. Application of fine bubbles technology in wastewater treatment plant (WWTP) for aquaculture system. AIP Conference Proceedings, 2219: 090001. https://doi.org/10.1063/5.0003078
  11. Kementerian Kelautan dan Perikanan. 2023. Statistik Kelautan dan Perikanan Indonesia 2022. Jakarta: Pusat Data, Statistik dan Informasi
  12. Kramer, L. 2021. Nanobubbles, aquaculture and a world of possibility. Responsible Seafood Advocate, 2 August 2021. https://www.globalseafood.org/advocate/nanobubbles-aquaculture-and-a-world-of-possibility/
  13. Li, J., K. Huang, L. Huang, Y. Hua, K. Yu, T. Liu. 2020. Effects of dissolved oxygen on the growth performance, haematological parameters, antioxidant responses and apoptosis of juvenile GIFT (Oreochromis niloticus). Aquaculture Research, 51(9): 3925–3935. https://doi.org/10.1111/are.14684
  14. Magwa, R.J., E.R.E. Gelis, L.H. Yunita, Y. Wulanda, S. Heltria, F. Ramdhani. 2023. Analisis hubungan panjang berat ikan kerapu (Epinephelus sp) yang didaratkan di Kaliadem dan Pasar Ikan Muara Angke, Jakarta. Journal of Indonesian Tropical Fisheries (JOINT-FISH), 6(2): 174–184. https://doi.org/10.33096/joint-fish.v6i2.334
  15. Oulie, F. 2024. The effect of dissolved oxygen on feed intake, growth and nutrient utilization in Atlantic salmon (Salmo salar). Tesis Magister, Department of Biological Sciences, University of Bergen, Norway
  16. Pratama, E., D.K. Sari, A. Rahman. 2021. Fluktuasi Kualitas Air Budidaya Ikan Nila Oreochromis niloticus dengan Beberapa Variasi Sistem Resirkulasi. https://www.researchgate.net/publication/356056199
  17. Qiu, T., L. Zhang, H. Wang, Y. Li. 2024. Dynamic analysis of α-factor for fine bubble versus surface aeration: Implications for N₂O emissions and oxygenation efficiency. Chemical Engineering Journal, 486: 150650. https://doi.org/10.1016/j.cej.2024.150650
  18. Rasul, Supriyono, E., K. Adiyana. 2024. Performa kualitas air dengan pengkayaan oksigen terlarut pada sistem resirkulasi budidaya udang vannamei (Litopenaeus vannamei). JAGO TOLIS: Jurnal Agrokompleks Tolis, 4(3): 168-173. http://dx.doi.org/10.56630/jago.v4i3.611
  19. Rizky, P.N., L.B. Litongga. 2022. Use of microbubble generator on the growth vannamei shrimp culture. IOP Conference Series: Earth and Environmental Science, 1036: 012081. https://doi.org/10.1088/1755-1315/1036/1/012081
  20. Saravanan, S., I. Geurden, A.C. Figueiredo-Silva, S. Nusantoro, S. Kaushik, J.A.J. Verreth, J.W. Schrama. 2013. Oxygen consumption constrains food intake in fish fed diets varying in essential amino acid composition. PLoS ONE, 8(8): e72757. https://doi.org/10.1371/journal.pone.0072757
  21. Sharifinia, M. 2025. From nutrient bioavailability to disease resistance: The comprehensive benefits of chelated minerals in aquaculture. Fish and Shellfish Immunology. https://doi.org/10.1016/j.fsi.2025.110218
  22. Stiller, K.T., K.H. Vanselow, D. Moran, G. Riesen, W. Koppe, C. Dietz, C. Schulz. 2017. The effect of diet, temperature and intermittent low oxygen on the metabolism of rainbow trout. British Journal of Nutrition, 117: 784–795. https://doi.org/10.1017/S0007114517000472
  23. Subhan, U., V. Muthukannan, S.Y. Azhary, M.F. Mulhadi, E. Rochima, C. Panatarani, I.M. Joni. 2018. Development and performance evaluation of air fine bubbles on water quality of Thai catfish rearing. AIP Conference Proceedings, 1927: 030043. https://doi.org/10.1063/1.5021236
  24. Subhan, U., Iskandar, Zahidah, I.M. Joni. 2021. Detection of reserve oxygen potential in the presence of fine bubbles and its ammonia removal for aquaculture effluent. Materials Science Forum, 1044: 103–111. https://doi.org/10.4028/www.scientific.net/msf.1044.103
  25. Subhan, U., Iskandar, Zahidah, C. Panatarani, I.M. Joni. 2022. Effect of ultrafine bubbles on various stocking density of striped catfish larviculture in recirculating aquaculture system. Fishes, 7: 190. https://doi.org/10.3390/fishes7040190
  26. Thorarensen, H., A. Gústavsson, Y. Mallya, S. Gunnarsson, J. Árnason, I. Arnarson, A.F. Jónsson, H. Smáradóttir, G.Th. Zoega, A.K. Imsland. 2010. The effect of oxygen saturation on the growth and feed conversion of Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture, 309(1–4): 96–102. https://doi.org/10.1016/j.aquaculture.2010.08.019
  27. Xiong, Z., M. Ma, Y. Guo, Y. Sun, R. Li. 2025. Effect of flow rate and dissolved oxygen distribution on aeration of the recirculating aquaculture tank. Computers and Electronics in Agriculture, 234: 110290. https://doi.org/10.1016/j.compag.2025.110290
  28. Yaparatne, S., J. Morón-López, D. Bouchard, S. Garcia-Segura, O.G. Apul. 2024. Nanobubble applications in aquaculture industry for improving harvest yield, wastewater treatment, and disease control. Science of The Total Environment, 931: 172687. https://doi.org/10.1016/j.scitotenv.2024.172687
  29. Yu, G., S. Zhang, X. Chen, D. Li, Y. Wang. 2024. Investigation on aeration efficiency and energy efficiency optimization in recirculating aquaculture coupling CFD with Euler-Euler and species transport model. Journal of Environmental Chemical Engineering, 12(5): 113927. https://doi.org/10.1016/j.jece.2024.113927

Last update:

No citation recorded.

Last update:

No citation recorded.