skip to main content

PEMBANGKIT LISTRIK TENAGA GEMPA BUMI (PLTGB) : PEMANFAATAN GETARAN GEMPA BUMI SEBAGAI PENGHASIL ENERGI LISTRIK PASCA GEMPA YANG RAMAH LINGKUNGAN

*yuniar amalia  -  Universitas Sebelah Maret, Indonesia

Citation Format:
Abstract

Earthquakes are events that come suddenly. Until now, the occurrence of the earthquake has not yet been predicted. Likewise, the risk posed by earthquakes cannot be predicted, but can be reduced through disaster mitigation. However, mitigation has not been able to solve problems that occur after the earthquake, such as constraints on meeting electrical energy. Indonesia has the potential to utilize earthquake vibrations into electricity, through the Earthquake Power Plant (PLTGB) proposed by the author. One of the techniques that can be used for the process of converting earthquake vibration energy into electrical energy is using piezoelectric materials. Piezoelectric material is a material that has high advantages with a stable energy density and does not require an external power so that its utilization produces large profits. The process of harvesting electrical energy is obtained from applying pressure to the piezoelectric material at a certain frequency, so that the piezoelectric material can function as an electric generator. The type of writing used in this paper is literature review, with secondary data sources obtained from various literatures. Data collection techniques using documentation study. Data analysis used an interactive analysis model, namely data collection, data reduction, data presentation and drawing conclusions. The principle of PLTGB application is carried out in two periods, namely the period during the earthquake and the period outside the earthquake with the aim of storing energy reserves outside the earthquake. The PLTGB construction material is implanted under the highway at 5 meters near the zebra crossing which will be made like a bump, so that during the earthquake period the material will work as in principle. However, outside the earthquake period, when the vehicle stops or runs, it will put mechanical pressure on the piezoelectric which can generate electric current. The material to be used as a piezoelectric in PLTGB is Barium Titanate (BaTiO3). This material is based on normal ferroelectricity which is strong for transducer induction when compared to the magnitude of its polarization, the amount of permittivity, and the amount of stress induction that this material can reach. The first stage of PLTGB implementation is creating a pilot area, the second stage of evaluation, the third stage of promotion, the fourth stage of PLTGB socialization, and the fifth stage of developing PLTGB nationally. For Indonesia, PLTGB has the potential to be applied. It is hoped that the electrical energy produced by PLTGB can be used for post-earthquake activities.

Fulltext View|Download

Article Metrics:

  1. Aktakka, E. E., Peterson, R. L., and Najafi, K. 2011. Thinned-PZT On SOI Process and Design Optimation For Piezoelectric Inertial Energy Harvesting. Beijing. IEEE Int Transducers
  2. Darmawan, D. 2013. Metode Penelitian Kunatitatif. Bandung. Remaja Rosdakarya. Ertuğ, B.. 2013. Electrical Conductivity and Husteresis Characteristic of BaTiO3-
  3. Based Sendors with Polymethyl Metacrylate (PPMMA) Pore Former. Sensors and Materials. 25 (5). 309-321
  4. Haifani, A. M. 2008. Manajemen Resiko Bencana Gempa Bumi. Prosiding Seminar Nasional IV SDM Teknologi Nuklir. Batan. Sekolah Tinggi Teknik Nuklir
  5. Handri. 2009. PLN: Listrik Pascagempa Tasikmalaya Normal Rabu Malam. http://www.antaranews.com/berita/153261/pln-listrik-pascagempa- tasikmalaya-normal-rabu-malam
  6. Hassan, M. I. 2002. Pokok-Pokok Materi Metodologi Penelitian. Jakarta. Ghalia Indonesia
  7. Kasyap, A. 2009. Miniature Portable Ambient Energy Harvesting Modules Powered. Hampton. AdaptivEnergy, Inc
  8. Kementerian Pekerjaan Umum. 2010. SNI-1726-2001 (Tata Cara Perencanaan Ketahanan Gempa untuk Bangunan Gedung). Jakarta. Kementerian Pekerjaan Umum
  9. Kertapati, E. K. 2004. Aktivitas Gempa Bumi di Indonesia. Jakarta. Pusat Penelitian dan Pengembangan Geologi, Badan Penelitian dan Pengembangan, Departemen Energi dan Sumber Daya Mineral
  10. Kurniawan, H. 2012. Listrik Banda Aceh Padam Akibat Gempa 8,9 SR. http://international.okezone.com/read/2012/04/11/447/609654/listrik-banda aceh-padam-akibat-gempa-8-9-sr
  11. Mardiyanto dan Ahda, S. 2012. Struktur Mikro Bahan Piezoelektrik Bebas Timbal Bismuth Natrium Titanat-Barium Titanat-Kalium Natrium Niobate Hasil Sintesis Dengan Metode Reaksi Padat. Jurnal Sains Materi Indonesia. 12 (2). 120-124
  12. Miles, M. B dan Huberman, A. M. 1992. Analisis Data Kualitatif. Jakarta. Ul-Press
  13. Muensit, N. 2012. Small-Scale Energy Harvesting With Low Dimensional Piezoelectric. Proceeding of International Conferences on Physics and Application. Surakarta
  14. Novianta, M. A. 2012. Sistem Deteksi Dini Gempa Dengan Piezo Elektrik Berbasis Mikrokontroler AT89C51. Simposium Nasional RAPI XI FT UMS. Surakarta. Universitas Muhammadiyah Surakarta
  15. Pawirodikromo, W. 2012. Seismologi Teknik dan Rekayasa Kegempaan. Yogyakarta: Pustaka
  16. Belajar
  17. Putra, E. dan Yulia, E. 2015. Polisi Tidur Piezoelektrik sebagai Pembangkit Listrik dengan Memanfaatkan Energi Kinetik Kendaraan Bermotor. http://www.tf.itb.ac.id/riset/penelitian/polisi-tidur-piezoelektrik-sebagai- pembangkit-listrik-dengan-memanfaatkan-energi-kinetik-kendaraan- bermotor/
  18. Shen, D. 2009. Piezoelectric Energy Harvesting Devices for Low Frequency Vibration Aplications. Dissertation. Auburn University. Alabama
  19. Singh, U. K., and Middleton, R. H. 2007. Piezoelectric Power Scavenging of Mechanical Vibration Energy. Australian Minning Technology Conference. 111-118
  20. Sodano, H. A., Inman, D.J., and Park, G. 2004. A Review of Power Harvesting from Vibration using Piezoelectric Materials. The Shock and Vibration Digest. 36 (3). 197-205
  21. Suhendra. 2012. Tangani Pemadaman Listrik Akibat Gempa PLN Siapkan Genset. http://news.detik.com/transisipresiden/read/2012/04/11/174611/18901 59/1034/tangani-pemadaman-listrik-akibat-gempa-pln-siapkan-genset
  22. Tayal, A. 2012. Eathquake versus Electric Field (A Resistant Design with Piezo Ceramic Materails). International Journal of Scientific and Engineering Research. 3 (12). 1-10
  23. Woas, P. 2012. Micro Energy Harvesting From Basic Research to Practical Application. London UK
  24. Zuo, L. and Tang, X. 2013. Large-Scale Vibration Energy Harvesting. Journal of Intelligent
  25. Material Systems and Structures. 24 (11). 1405-143

Last update:

No citation recorded.

Last update:

No citation recorded.