skip to main content

Analisis dan Desain Modifikasi Jembatan Rangka Busur Baja dengan Fluid Viscous Damper Menggunakan SAP2000

*Muhamad Fauzan Akbari  -  Universitas Pembangunan Nasional Veteran Jawa Timur, Indonesia
Yohanes Hadi Saputra  -  Institut Teknologi Sepuluh November, Indonesia
Rizqi Alghiffary  -  Universitas Pembangunan Nasional Veteran Jawa Timur, Indonesia
Griselda Junianda Velantika  -  Universitas Pembangunan Nasional Veteran Jawa Timur, Indonesia
Karina Melawati Eka Putri  -  Universitas Pembangunan Nasional Veteran Jawa Timur, Indonesia
Elok Dewi Widowati  -  Universitas Pembangunan Nasional Veteran Jawa Timur, Indonesia

Citation Format:
Abstract

ABSTRACT The bridge design modification presented in this study focuses on implementing a steel arch truss system combined with Fluid Viscous Dampers (FVDs) to improve structural efficiency and seismic resilience. The steel arch truss enables a longer main span with fewer intermediate supports, offering construction advantages, enhanced stability, and improved aesthetics. Additionally, the integration of FVDs aims to reduce structural displacements during seismic events, thereby minimizing potential post-earthquake damage.

The object of this study is referred to as Bridge XYZ, assumed to be one of the key bridges in Gresik Regency, serving as a vital connection between Gresik and Lamongan. This bridge plays a strategic role in supporting mobility and logistics distribution in the region, making structural optimization and seismic mitigation essential. The research methodology includes data collection and literature review, followed by the structural redesign process. Structural modeling and analysis were conducted using SAP2000 software, adhering to Indonesian bridge and seismic design standards. The primary objective is to develop a single-span bridge configuration using steel orthotropic decks for a lighter superstructure and to evaluate the effectiveness of FVDs in reducing seismic-induced displacements. The analysis results show that the redesigned bridge utilizes BJ55 steel orthotropic deck plates with T-profile ribs, cross girders with WF profiles, tie beams with box girders, and Macalloy suspension cables. The application of FVDs successfully reduced seismic displacement by 3% to 45%, demonstrating their effectiveness in enhancing the bridge’s structural resilience.

KEYWORDS Fluid Viscous Damper; SAP2000; Steel Arch Truss.

Fulltext View|Download

Article Metrics:

  1. Arslan, A., 2020. Bridges as City Landmarks: A Critical Review on Iconic Structures. Journal of Design Studio, pp.85–99. https://doi.org/10.46474/jds.798072
  2. Chen, W.-F. and Duan, L., 2014. Bridge Engineering Handbook Super Structure Design. Civ. Eng. (N.Y.),
  3. Khedmatgozar Dolati, S.S., Mehrabi, A. and Khedmatgozar Dolati, S.S., 2021. Application of viscous damper and laminated rubber bearing pads for bridges in seismic regions. Metals, 11(11). https://doi.org/10.3390/met11111666
  4. Kiral, A., Gurbuz, A. and Ustabas, I., 2025. The Seismic Response Evaluation of an Existing Multi-span Reinforced Concrete Highway Bridge in the Presence of Linear and Nonlinear Viscous Dampers. Arabian Journal for Science and Engineering, 50(11), pp.8317–8335. https://doi.org/10.1007/s13369-024-09265-2
  5. Mauliana, Y. and Saputra, F., 2024. Akselerasi: Jurnal Ilmiah Teknik Sipil. [online] 5(2). Available at: https://jurnal.unsil.ac.id/index.php/akselerasi/article/view/10189/3204
  6. Propika, J. and Septiarsilia, Y., 2020. Re-Design Jembatan THP dengan Sistem Box Girder Segmental
  7. Sun, N., Zheng, X., Li, Y., Zhao, Y., Yuan, H. and Zhou, M., 2024. Numerical Study on the Mechanical Performance of a Flexible Arch Composite Bridge with Steel Truss Beams over Its Entire Lifespan. Sustainability (Switzerland), 16(14). https://doi.org/10.3390/su16146041
  8. Sunarjo, T. dan Sugeng.P., 2010. Gempa Bumi Edisi Populer.Jakarta: Badan Meteorologi Klimatologi dan Geofisika
  9. Tiwari, H., Rai, S.P. and Shivangi, K., 2016. Bridging the gap or broadening the problem? Natural Hazards, 84(1), pp.351–366. https://doi.org/10.1007/s11069-016-2422-x
  10. Yi, J., Li, J. and Guan, Z., 2018. Shake Table Studies on Viscous Dampers in Seismic Control of a Single-Tower Cable-Stayed Bridge Model under Near-Field Ground Motions. Journal of Earthquake and Tsunami, 12(5). https://doi.org/10.1142/S1793431118500112
  11. Zhang, X., Deng, Z., Fang, G. and Ge, Y., 2022. Theoretical Analysis of Ultimate Main Span Length for Arch Bridge. Sustainability (Switzerland), 14(24). https://doi.org/10.3390/su142417043
  12. si Nasional (BSN), 2016. SNI 1725:2016 – Beban Minimum untuk Perancangan Jembatan. Jakarta: Badan Standardisasi Nasional
  13. Badan Standardisasi Nasional (BSN), 2015. SNI 1729:2015 – Spesifikasi untuk Bangunan Gedung Baja Struktural. Jakarta: Badan Standardisasi Nasional
  14. ASCE, 2016. ASCE/SEI 7-16 – Minimum Design Loads and Associated Criteria for Buildings and Other Structures. Reston, Virginia: American Society of Civil Engineers
  15. Badan Standardisasi Nasional (BSN), 2019. SNI 2847:2019 – Persyaratan Beton Struktural untuk Bangunan Gedung. Jakarta: Badan Standardisasi Nasional
  16. Brockenbrough, R. L., 1994. Highway Engineering Handbook. New York: McGraw-Hill
  17. Wai-Fah, C. & Duan, L., 2014. Bridge Engineering Handbook: Substructure Design. 2nd Edition. Boca Raton: CRC Press
  18. Heins, C. P. & Afirmage, E. G., 1990. Design of Modern Steel Structures. New York: Wiley
  19. Setiawan, A., 2015. Struktur Baja: Konsep dan Aplikasi untuk Bangunan Gedung. Yogyakarta: Graha Ilmu

Last update:

No citation recorded.

Last update:

No citation recorded.