skip to main content

Analisis Heat Island pada Perkebunan Kelapa Sawit: Studi Kasus di Kabupaten Kayong Utara, Kalimantan Barat

*Nurul Ihsan Fawzi scopus  -  Alam Sehat Lestari Kalimantan Barat, Indonesia
Marindah Yulia Iswari scopus  -  Lembaga Ilmu Pengetahuan Indonesia, Indonesia
Open Access Copyright (c) 2020 Jurnal Wilayah dan Lingkungan under https://creativecommons.org/licenses/by-nc-sa/4.0/.

Citation Format:
Abstract

Between 2000 – 2017, 3.06 million hectares of primary forest in Kalimantan have been converted into palm oil plantation. This change impacts local climate changes. This study aims is to analyze the heat island in palm oil plantation. The analytical method used surface temperature estimation through remote sensing and zonal statistics. The remote sensing data that are used is Landsat 8 images acquired on 15 July 2018 and 3 August 2019. From this research, we found that young palm oil plantations have an average IHI value of 2.1 ± 1.7oC in 2018 and 1.7 ± 1.4oC in 2019. The IHI value is close to the heat island in a built-up area. IHI for mature palm oil plantation (11-12 years) created a cool island with an intensity close to secondary forest. The decreasing value of IHI for 2018 and 2019 in palm oil plantations is due to the growth of palm oil trees, which decreases surface temperature. The implication of this research is to know heat island effect due to deforestation or land cover changes, especially change into palm oil plantations.


Note: This article has supplementary file(s).

Fulltext View|Download |  Copyright Transfer Agreement
Copyright Transfer Agreement
Subject
Type Copyright Transfer Agreement
  Download (602KB)    Indexing metadata
Keywords: heat island; landsat 8; palm oil plantations; remote sensing

Article Metrics:

  1. Aris, A., Syaf, H., Yusuf, D. N., & Nurgiantoro. (2019). Analysis of urban heat island intensity using multi temporal landsat data; case study of Kendari City, Indonesia. IOP Conference Series Earth and Environmental Science, 389(1), 1-14. doi: 10.1088/1755-1315/389/1/012002
  2. Ashton‐Butt, A., Willcock, S., Purnomo, D., Suhardi, Aryawan, A. A. K., Wahyuningsih, R., Naim, M., Poppy, G. M., Caliman, J., Peh, K. S. ‐H., & Snaddon, J. L. (2019). Replanting of first-cycle oil palm results in a second wave of biodiversity loss. Ecology and Evolution, 9(11), 6433-6443. doi: 10.1002/ece3.5218
  3. Barsi, J. (2019, July 9). Atmospheric Correction Parameter Calculator. https://atmcorr.gsfc.nasa.gov/
  4. Badan Pusat Statistik (BPS) Kabupaten Kayong Utara. (2018). Statistik daerah Kabupaten Kayong Utara 2018. Badan Pusat Statistik Kabupaten Kayong Utara
  5. Badan Pusat Statistik (BPS) Kabupaten Kayong Utara. (2019). Kabupaten Kayong Utara dalam angka 2019. Badan Pusat Statistik Kabupaten Kayong Utara
  6. Cai, M., Ren, C., Xu, Y., Lau, K. K.-L., & Wang, R. (2018). Investigating the relationship between local climate zone and land surface temperature using an improved WUDAPT methodology – A case study of Yangtze River Delta, China. Urban Climate, 24, 485–502. doi: 10.1016/j.uclim.2017.05.010
  7. Coll, C., Galve, J. M., Sánchez, J. M., & Caselles, V. (2010). Validation of landsat-7/ETM+ thermal-band calibration and atmospheric correction with ground-based measurements. IEEE Transactions on Geoscience and Remote Sensing, 48(1), 547–555. doi: 10.1109/TGRS.2009.2024934
  8. Curran, L. M., Trigg, S. N., Mcdonald, a K., & Astiani, D. (2004). Lowland forest loss in protected areas. Terra, 303(February), 1000–1003. doi.org/10.1126/science.1091714
  9. ESRI. (2016). Zonal Statistics—Help | ArcGIS for Desktop. http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/zonal-statistics.htm
  10. Fawzi, N. I. (2014). Pemetaan emisivitas permukaan menggunakan indeks vegetasi. Majalah Ilmiah Globë, 16(2), 133–140
  11. Fawzi, N. I. (2017). Mengukur urban heat island menggunakan penginderaan jauh, kasus di Kota Yogyakarta. Majalah Ilmiah Globë, 19(2), 195–206. doi: 10.24895/MIG.2017.19-2.603
  12. Fawzi, N. I. I., Husna, V. N. N., & Helms, J. A. A. (2018). Measuring deforestation using remote sensing and its implication for conservation in Gunung Palung National Park, West Kalimantan, Indonesia. IOP Conference Series: Earth and Environmental Science, 149. doi: 10.1088/1755-1315/149/1/012038
  13. Fawzi, N. I., Indrayani, A. M., & DeKay, K. (2019). Forest change monitoring and environmental impact in Gunung Palung National Park, West Kalimantan, Indonesia. Jurnal Ilmu Lingkungan, 17(2), 197–204. doi: 10.14710/jil.17.2.197-204
  14. Fawzi, N. I., & Jatmiko, R. H. (2015). Heat island detection in coal mining areas using multitemporal remote sensing. Proceedings the 36th Asian Conference of Remote Sensing (ACRS 2015), Metro Manila, Philippines
  15. Gaveau, D. L. A., Locatelli, B., Salim, M. A., Yaen, H., Pacheco, P., & Sheil, D. (2019). Rise and fall of forest loss and industrial plantations in Borneo (2000-2017). Conservation Letters, 12(3), 1–8. doi: 10.1111/conl.12622
  16. Gronlund, C. J. (2014). Racial and socioeconomic disparities in heat-related health effects and their mechanisms: a review. Current Epidemiology Reports, 1(3), 165–173. doi: 10.1007/s40471-014-0014-4
  17. Hardwick, S. R., Toumi, R., Pfeifer, M., Turner, E. C., Nilus, R., & Ewers, R. M. (2015). The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in microclimate. Agricultural and Forest Meteorology, 201, 187–195. doi: 10.1016/j.agrformet.2014.11.010
  18. Heaviside, C., Macintyre, H., & Vardoulakis, S. (2017). The urban heat island: implications for health in a changing environment. Current Environmental Health Reports, 4, 296–305. doi: 10.1007/s40572-017-0150-3
  19. Karyono, T. H. (2015). Predicting comfort temperature in Indonesia, an initial step to reduce cooling energy consumption. Buildings, 5(3), 802–813. doi: 10.3390/buildings5030802
  20. Kementerian Lingkungan Hidup dan Kehutanan (KLHK). (2019). Rekapitulasi luas kebakaran hutan dan lahan (ha) per provinsi di Indonesia tahun 2014-2019. Retrieved from http://sipongi.menlhk.go.id/pdf/luas_kebakaran
  21. Li, G., Zhang, X., Mirzaei, P. A., Zhang, J., & Zhao, Z. (2018). Urban heat island effect of a typical valley city in China: Responds to the global warming and rapid urbanization. Sustainable Cities and Society, 38, 736–745. doi: 10.1016/j.scs.2018.01.033
  22. Li, H., Zhou, Y., Li, X., Meng, L., Wang, X., Wu, S., & Sodoudi, S. (2018). A new method to quantify surface urban heat island intensity. Science of The Total Environment, 624, 262–272. doi: 10.1016/j.scitotenv.2017.11.360
  23. Lima Alves, E., & Lopes, A. (2017). The urban heat island effect and the role of vegetation to address the negative impacts of local climate changes in a small Brazilian City. Atmosphere, 8(2), 18. doi: 10.3390/atmos8020018
  24. NASA. (2019). FIRMS - Fire Map. Retrieved from https://firms.modaps.eosdis.nasa.gov/map/#z:9;c:110.3,-1.3;t:adv-points;d:2019-08-02..2019-08-03;l:firms_viirs,firms_modis_a,firms_modis_t
  25. Ozdemir, H., Unal, A., Kindap, T., Turuncoglu, U. U., Durmusoglu, Z. O., Khan, M., Tayanc, M., & Karaca, M. (2012). Quantification of the urban heat island under a changing climate over Anatolian Peninsula. Theoretical and Applied Climatology, 108(1–2), 31–38. doi: 10.1007/s00704-011-0515-8
  26. Qaid, A., Bin Lamit, H., Ossen, D. R., & Raja Shahminan, R. N. (2016). Urban heat island and thermal comfort conditions at micro-climate scale in a tropical planned city. Energy and Buildings, 133, 577–595. doi: 10.1016/j.enbuild.2016.10.006
  27. Ramdani, F., Moffiet, T., & Hino, M. (2014). Local surface temperature change due to expansion of oil palm plantation in Indonesia. Climatic Change, 123(2), 189–200. doi: 10.1007/s10584-013-1045-4
  28. Rasul, A., Balzter, H., Smith, C., Remedios, J., Adamu, B., Sobrino, J., Srivanit, M., & Weng, Q. (2017). A review on remote sensing of urban heat and cool islands. Land, 6(2), 38. doi.org/10.3390/land6020038
  29. Risdiyanto, I., Ariyani, W., & Sujatnika, O. (2019). Regional heat capacity changes on oil palm plantation development in 1994-2010 based on Landsat-5 TM satellite data. IOP Conference Series: Earth and Environmental Science, 336, 012023. doi: 10.1088/1755-1315/336/1/012023
  30. Robock, A. (1991). Surface cooling due to forest fire smoke. Journal of Geophysical Research, 96(D11), 20.869-20.878. doi: 10.1029/91JD02043
  31. Rushayati, S. B., Hermawan, R., & Meilani, R. (2017). Age-surface temperature estimation model: When will oil palm plantation reach the same surface temperature as natural forest? IOP Conference Series: Earth and Environmental Science, 54(1), 012048. doi: 10.1088/1755-1315/54/1/012048
  32. Sabajo, C. R., le Maire, G., June, T., Meijide, A., Roupsard, O., & Knohl, A. (2017). Expansion of oil palm and other cash crops causes an increase of the land surface temperature in the Jambi province in Indonesia. Biogeosciences, 14(20), 4619–4635. doi: 10.5194/bg-14-4619-2017
  33. Salafsky, N. (1994). Forest gardens in the Gunung Palung region of West Kalimantan, Indonesia. Agroforestry Systems, 28(3), 237–268. doi: 10.1007/BF00704759
  34. Streutker, D. R. (2003). Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sensing of Environment, 85(3), 282–289. doi: 10.1016/S0034-4257(03)00007-5
  35. USDA. (2019). Indonesia oilseeds and products annual 2019. https://www.fas.usda.gov/data/indonesia-oilseeds-and-products-annual-3
  36. USGS. (2019). Landsat 8 (L8) data users handbook (Version 4). Department of the Interior U.S. Geological Survey. Retrieved from https://landsat.usgs.gov/landsat-8-l8-data-users-handbook-section-1
  37. Valor, E., & Caselles, V. (1996). Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote Sensing of Environment, 57(3), 167–184. doi: 10.1016/0034-4257(96)00039-9
  38. Vijay, V., Pimm, S. L., Jenkins, C. N., & Smith, S. J. (2016). The impacts of oil palm on recent deforestation and biodiversity loss. PLoS ONE, 11(7), e0159668. doi: 10.1371/journal.pone.0159668
  39. Wang, R., Li, F., Yang, W., & Zhang, X. (2009). Eco-service enhancement in peri-urban area of coal mining city of Huaibei in East China. Acta Ecologica Sinica, 29(1), 1–6. doi: 10.1016/j.chnaes.2009.04.001
  40. Wilcove, D. S., & Koh, L. P. (2010). Addressing the threats to biodiversity from oil-palm agriculture. Biodiversity and Conservation, 19(4), 999–1007. doi: 10.1007/s10531-009-9760-x
  41. Yang, Q., Huang, X., & Tang, Q. (2019). The footprint of urban heat island effect in 302 Chinese cities: Temporal trends and associated factors. Science of the Total Environment, 655, 652–662. doi: 10.1016/j.scitotenv.2018.11.171
  42. Zhou, D., Xiao, J., Bonafoni, S., Berger, C., Deilami, K., Zhou, Y., Frolking, S., Yao, R., Qiao, Z., & Sobrino, J. (2018). Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sensing, 11(1), 48. doi: 10.3390/rs11010048

Last update:

No citation recorded.

Last update:

No citation recorded.