Hubungan dan Aliran Informasi Antar Pelaku pada Klaster Batik Kota Pekalongan

*Dwi Astuti  -  Pusat Pengkajian Kebijakan Difusi Teknologi, Badan Pengkajian dan Penerapan Teknologi, Jakarta, Indonesia
Jawoto Sih Setyono  -  Jurusan Perencanaan Wilayah dan Kota, Fakultas Teknik, Universitas Diponegoro, Semarang, Indonesia
Received: 21 Apr 2016; Published: 30 Apr 2016.
Open Access
Citation Format:
Article Info
Section: Articles
Language: ID
Statistics: 490 648
Abstract

Batik Pekalongan potentially has a unique characteristic developed by each entrepreneur. The relationships between entrepreneurs in order to stimulate the innovative development of batik should be examined for future development. This study aims to determine how the relationships between and information flow across the actors involved in cooperation networks to support batik cluster development in Pekalongan. The research conducts survey method with both qualitative and quantitative approaches. The data is obtained from primary and secondary data. This study aims to understand the relationships between the actors involved in the batik cluster through Social Network Analysis (SNA). The results show that the roles of actors are still not optimal and need to be improved. Disperindagkop and UMKM, Bappeda, Ministry of Industry, and FEDEP BPPT of Pekalongan City have the major role in developing batik clusters. Their contributions are measured from techniques of centrality degree, closeness centrality, and betweenness centrality in the network. The source of batik knowledge information source comes from the both the customers and the entrepreneurs of batik. The sources of batik knowledge sharing come from the consumers useful to information exchange and innovation sharing which affect to batik production process. Batik cluster consists of multi-stakeholders carrying out some shortcomings so that it is necessary to integrate the roles of actors and the innovation process and technology as a strategy for the development of innovative clusters.

Keywords: actors; information flow; networking; industrial clusters

Article Metrics:

  1. Astuti, Y. (2009). Pengembangan inovasi dalam klaster batik Pekalongan (Unpublished master’s thesis). Program Studi Magister Pembangunan Wilayah dan Kota, Universitas Diponegoro, Semarang.
  2. Badan Pengkajian dan Penerapan Teknologi (BPPT). (2003). Panduan pengembangan klaster industri unggulan daerah. Jakarta: Badan Pengkajian dan Penerapan Teknologi.
  3. Blakely, E. J. (1994). Planning local economic development (Theory and practice). California: Sage Publications Inc.
  4. Bohlmann, J. D., Calantone, R. J., & Zhao, M. (2010). The effects of market network heterogeneity on innovation diffusion: An agent-based modeling approach. The Journal of Product Innovation Management, 27(5), 741–760. doi: 10.1111/j.1540-5885.2010.00748.x
  5. Brouder, A. M., & Berry, L. (2004). Sustainable business clusters in the regions (Regional Futures Research Report February 2004). Retrieved from http://old.tci-network.org/media/asset_publics/resources/000/000/709/original/SustainableBusinessClustersReport.pdf.
  6. Corsaro, D., Cantù, C., & Tunisini, A. (2012). Actors' Heterogeneity in Innovation Networks. Industrial Marketing Management, 41, 780-789. doi: 10.1016/j.indmarman.2012.06.005
  7. Daly, E., & Haahr, M. (2007). Social network analysis for routing in disconnected delay-tolerant MANETs. Proceedings of the 8th ACM International Symposium on Mobile ad hoc Networking and Computing, 32-40. doi: 10.1145/1288107.1288113
  8. Darroch, J. (2005). Knowledge management, innovation and firm performance. Journal of Knowledge Management, 9(3), 101-115. doi: 10.1108/13673270510602809
  9. De Fretes, F., Utomo, W. H., & Manongga, D. (2012). Application of Social Network Analysis for Mapping Patterns of the Learning Process in LPIA Tambun. International Journal of Computer Science, 9(3), 91-97.
  10. Han, Z. (2009). A model of clustering process in low income economies. International Journal of Business and Management, 4(12), 46-51. doi: 10.5539/ijbm.v4n12p46
  11. Hanneman, R. A., & Riddle, M. (2005). Introduction to social network methods. Riverside, CA: University of California.
  12. Hartanto, A. (2004). Strategi clustering dalam industrialisasi Indonesia. Yogyakarta: Penerbit Andi.
  13. Morosini, P. (2004). Industrial Clusters, Knowledge Integration and Performance. World Development, 32(2), 305-326. doi: 10.1016/j.worlddev.2002.12.001
  14. Mulyana, D. (2005). Ilmu komunikasi suatu pengantar. Bandung: Remaja Rosdakarya.
  15. Oerlemans, L. A. G., Meeus, M. T. H., & Boekema, F. W. M. (2001). Firm clustering and innovation: Determinants and effects. Papers in Regional Science, 80, 337–356. doi: 10.1111/j.1435-5597.2001.tb01803.x
  16. Porter, M. E. (1990). Competitive advantage of nations. New York: Free Press.
  17. Rodan, S., & Galunic, C. (2004). More than network structure: How knowledge heterogeneity influences managerial performance and innovativeness. Strategic Management Journal, 25(6), 541–562. doi: 10.1002/smj.398
  18. Susanty, A., Handayani, N. U., & Jati, P. A. (2013). Analisis faktor-faktor yang mempengaruhi pertumbuhan klaster batik Pekalongan (Studi kasus pada Klaster Batik Kauman, Pesindon dan Jenggot). J@TI Undip, 8(1), 1-14.
  19. Zuhal. (2013). Gelombang ekonomi inovasi: Kesiapan Indonesia berselancar di era ekonomi baru. Jakarta: PT.Gramedia Pustaka Utama.