skip to main content

Analisis Kerentanan Pencemaran Air Tanah di Kota Batu Menggunakan Analisis Multikriteria Spasial dengan Indeks DRASTIC

*Luhur Akbar Devianto scopus  -  Universitas Brawijaya, Indonesia
Novia Lusiana  -  Universitas Brawijaya, Indonesia
Fatwa Ramdani scopus  -  Universitas Brawijaya, Indonesia
Open Access Copyright (c) 2019 Jurnal Wilayah dan Lingkungan under https://creativecommons.org/licenses/by-nc-sa/4.0/.

Citation Format:
Abstract

Groundwater and surface water are important sources of clean water which require an effective management. The use of groundwater and spring as exemplified by Batu City case – as part of Brantas watershed upstream – serves as raw water as well as clean water source for Batu City and Malang City population. Contamination of surface water and groundwater affects clean water supply as indicated by increasing nitrate, TDS, and E. Coli concentration. The study aims to analyze the vulnerability level of groundwater contamination by using spatial multicriteria analysis with DRASTIC index. The DRASTIC index is measured from some parameters such as surface water depth to water table, net recharge, aquifer media, soil media, topography, impact of vadose zone, and hydraulic conductivity to evaluate groundwater vulnerability. The results show that Batu City performs low vulnerability (86.93%) and medium vulnerability (13.07%) levels. The dominant factors affecting the level of vulnerability are groundwater levels, slope, and geological conditions across regions. Even though the DRASTIC modelling cannot specify the contamination levels of the different sources, this method is useful to identifying high-level contaminated land uses, managing water resources, and conserving groundwater sources.


Note: This article has supplementary file(s).

Fulltext View|Download |  Copyright Transfer Agreement
Copyright Transfer Agreement
Subject
Type Copyright Transfer Agreement
  Download (917KB)    Indexing metadata
Keywords: Batu City; DRASTIC index; groundwater vulnerability; spatial multicriteria analysis
Funding: Bambang Susilo, Ketua LPPM Universitas Brawijaya

Article Metrics:

  1. Aller, L., Lehr, J. H., Petty, R., & Bennett, T. (1987). Drastic: A standardized system to evaluate groundwater pollution potential using hydrogeologic setting. Journal of Geological Society of India, 29(1). Retrieved from http://www.geosocindia.org/index.php/jgsi/article/view/73340
  2. Babiker, I. S., Mohamed, M. A. A., Hiyama, T., & Kato, K. (2005). A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Science of the Total Environment, 345(1–3), 127–140. doi: 10.1016/j.scitotenv.2004.11.005
  3. Badan Perencanaan dan Pembangunan Nasional (BAPPENAS). (2015). Agenda nasional pembangunan air minum dan sanitasi 2015-2019. Jakarta
  4. Banerjee, P., Singh, V. S., Singh, A., Prasad, R. K., & Rangarajan, R. (2011). Hydrochemical analysis to evaluate the seawater ingress in a small coral island of India. Environmental Monitoring and Assessment, 184(6), 3929–3942. doi: 10.1007/s10661-011-2234-0
  5. Devianto, L. A., Suwarman, R., Rohman, A., & Iqbal, R. (2017). Determination of retention basin and infiltration well zone for groundwater recharge using GIS-based approach: Case study: Bantaeng regency, South Sulawesi, Indonesia. In 2017 International Symposium on Geoinformatics (ISyG). IEEE Xplore. doi: 10.1109/ISYG.2017.8280678
  6. Garfì, M., Tondelli, S., & Bonoli, A. (2009). Multi-criteria decision analysis for waste management in Saharawi refugee camps. Waste Management, 29(10), 2729–2739. doi: 10.1016/j.wasman.2009.05.019
  7. Hutasoit, L. M. (2009). Kondisi permukaan air tanah dengan dan tanpa peresapan buatan di daerah Bandung: Hasil simulasi numerik. Indonesian Journal on Geoscience, 4(3), 177–188. Retrieved from https://www.researchgate.net/publication/281021785_Kondisi_Permukaan_Air_Tanah_dengan_dan_tanpa_peresapan_buatan_di_daerah_Bandung_Hasil_Simulasi_Numerik
  8. Iman, M. I., Riawan, E., Setiawan, B., & Abdurahman, O. (2017). Air tanah untuk adaptasi perubahan iklim di Malang, Jawa Timur: Penilaian risiko penurunan ketersediaan air. RISET Geologi Dan Pertambangan, 27(1), 47–64. doi: 10.14203/risetgeotam2017.V27.438
  9. Jeppesen, B. (1996). Domestic greywater re-use: australia’s challenge for the future. Desalination, 106(1–3), 311–315. doi: 10.1016/0011-9164(96)00124-5
  10. Kovarik, J. L., Beynen, P. E. van, & Niedzielski, M. A. (2017). Groundwater vulnerability mapping for a sub-catchment of the Rio La Venta watershed, Chiapas, Mexico. Environmental Earth Sciences, 76(23), 1–11. doi: 10.1007/s12665-017-7113-8
  11. Lawrence, A. R., Macdonald, D. M. J., Howard, A. G., Barrett, M. H., Pedley, S., Ahmed, K. M., & Nalubega, M. (2001). Guidelines for assessing the risk to groundwater from on-site sanitation
  12. Lewis, W. J., Foster, S. S. D., & Drasar, B. S. (1980). The risk of groundwater pollution by on-site sanitation in developing countries: A literature review. Switzerland: The International Reference Centre for Waste Disposal
  13. Malczewski, J. (2004). GIS-based land-use suitability analysis: a critical overview. Progress in Planning, 62(1), 3–65. doi: 10.1016/j.progress.2003.09.002
  14. Maria, R. (2008). Hidrogeologi dan potensi resapan air tanah Sub Das Cikapundung bagian tengah. RISET Geologi Dan Pertambangan, 18(2), 21–30. doi: 10.14203/risetgeotam2008.v18.13
  15. Otago Regional Council. (2015). Groundwater contamination risk, septic tank density and distribution within Otago. Dunedin: Otago Regional Council
  16. Rahman, A. (2008). A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India. Applied Geography, 28(1), 32–53. doi: 10.1016/j.apgeog.2007.07.008
  17. Rao, S. M., Sekhar, M., & Rao, P. R. (2013). Impact of pit-toilet leachate on groundwater chemistry and role of vadose zone in removal of nitrate and E. coli pollutants in Kolar District, Karnataka, India. Environmental Earth Sciences, 68(4), 927–938. doi: 10.1007/s12665-012-1794-9
  18. Saatsaz, M., Sulaiman, W. N. A., Eslamian, S., & Mohammadi, K. (2011). GIS DRASTIC model for groundwater vulnerability estimation of Astaneh-Kouchesfahan Plain, Northern Iran. International Journal of Water, 6(1/2), 1–14. doi: 10.1504/IJW.2011.043313
  19. Sharifi, M., Hadidi, M., Vessali, E., Mosstafakhani, P., Taheri, K., Shahoie, S., & Khodamoradpour, M. (2009). Integrating multi-criteria decision analysis for a GIS-based hazardous waste landfill sitting in Kurdistan Province, western Iran. Waste Management, 29(10), 2740–2758. doi: 10.1016/j.wasman.2009.04.010
  20. Shivendra, B. T., & Ramaraju, H. K. (2015). Impact of onsite sanitation system on groundwater in different geological settings of Peri Urban Areas. Aquatic Procedia, 4, 1162–1172. doi: 10.1016/j.aqpro.2015.02.148
  21. Singhai, A., Das, S., Kadam, A. K., Shukla, J. P., Bundela, D. S., & Kalashetty, M. (2019). GIS-based multi-criteria approach for identification of rainwater harvesting zones in upper Betwa sub-basin of Madhya Pradesh, India. Environment, Development and Sustainability, 21(2), 777–797. doi: 10.1007/s10668-017-0060-4
  22. Sugianti, K., Mulyadi, D., & Maria, R. (2016). Analisis kerentanan pencemaran air tanah dengan pendekatan metode drastic di Bandung Selatan. Jurnal Lingkungan Dan Bencana Geologi, 7(1), 19–33. doi: 10.34126/jlbg.v7i1.91
  23. Sumathi, V. ., Natesan, U., & Sarkar, C. (2008). GIS-based approach for optimized siting of municipal solid waste landfill. Waste Management, 28(11), 2146–2160. doi: 10.1016/j.wasman.2007.09.032
  24. Taryana, D. (2015). Pengaruh formasi geologi terhadap potensi mata air di Kota Batu. Jurnal Pendidikan Geografi, 20(2), 9–19. doi: 10.17977/um017v20i22015p009
  25. Tiwari, K., Goyal, R., & Sarkar, A. (2018). GIS-based Methodology for Identification of Suitable Locations for Rainwater Harvesting Structures. Water Resources Management, 32(5), 1811–1825. doi: 10.1007/s11269-018-1905-9
  26. USAID. (2016). Saatnya sekarang! layanan lumpur tinja terjadwal. Jakarta. Retrieved from https://www.iuwashplus.or.id/cms/wp-content/uploads/2017/04/Saatnya-Sekarang-LLTT.pdf
  27. Widiatmono, B. R., Anugroho, F., Nurlaelih, E. E., Sulianto, A. A., & Lusiana, N. (2017). Assesment of the impacts of land use on water quality of Brantas Upstream, Batu City, Indonesia. Journal of Environmental Engineering and
  28. Sustainable Technology, 4(1), 18–25. doi: 10.21776/ub.jeest.2017.004.01.4
  29. Zghibi, A., Merzougui, A., Chenini, I., Ergaieg, K., Zouhri, L., & Tarhouni, J. (2016). Groundwater vulnerability analysis of Tunisian coastal aquifer: An application of DRASTIC index method in GIS environment. Groundwater for Sustainable Development, 2–3(August-September), 169–181. doi: 10.1016/j.gsd.2016.10.001

Last update:

No citation recorded.

Last update:

No citation recorded.