skip to main content

Penentuan Kualitas Kaolin sebagai Prekursor Sintesis Zeolit pada Kegiatan Praktikum

1Laboratorium Kimia Anorganik, Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, IPB University, Indonesia

2Material Assurance and Quality Improvement Department, PT. Toyota Motor Manufacturing Indonesia, Indonesia

3Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor, Indonesia

Open Access Copyright 2025 Jurnal Pengelolaan Laboratorium Pendidikan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Zeolite synthesis has attracted the attention of researchers today because of the functional properties of zeolites. The zeolite synthesis process can be influenced by various factors, one of which is the quality of the zeolite precursor. One of the precursor materials for zeolite synthesis is kaolin. This study aims to determine the quality of three kaolin brands used as precursors for zeolite synthesis in practicum activities. The quality of kaolin was assessed through gravimetric loss on ignition testing and analysis of the metal oxide composition using an X-ray fluorescence (XRF) spectrometer. The loss on ignition analysis results for kaolin A, kaolin B, and kaolin C samples were 7.94%, 7.87%, and 6.52%, respectively. The XRF analysis results, which included the compositions of SiO2, TiO2, Al2O3, Fe2O3, CaO, MgO, K2O and Na2O, were as follows: for kaolin A, 57.58%, 0.78%, 19.69%, 5.83%, 0.23%, 1.03%, 0.99% and 0.11%; for kaolin B, 56.30%, 0.80%, 21.30%, 7.19%, 0.08%, 0.52%, 1.19% and 0.16%; and for kaolin C, 68.03%, 0.80%, 14.40%, 5.08%, 0.32%, 0.94%, 0.95% and 0.01%. The two analysis results showed that the three kaolin samples had met the requirements as zeolite precursors based on the range of reference specification values: loss on ignitation<10%, SiO2 content 50–70%, TiO2 <1%, Al2O3 8.5–30.5%, Fe2O3 2–15.5%, CaO <1.68%, MgO 0.48–1.19%, K2O <3.6%, and Na2O <0.35%. The ensuing results furnish recommendations for the zeolite synthesis practicum, to select the most suitable kaolin type.

Note: This article has supplementary file(s).

Fulltext View|Download |  Copyright Transfer Agreement
Copyright Transfer Agreement
Subject
Type Copyright Transfer Agreement
  Download (879KB)    Indexing metadata
Keywords: hilang pijar, kaolin, oksida logam, praktikum, zeolit

Article Metrics:

  1. Atabaev, T. S., & Hong, N. H. (2019). Chapter 4 - Silica-Based Nanostructures in Biomedicine. In N. H. B. T.-N.-S. M. M. Hong (Ed.), Micro and Nano Technologies (pp. 73–88). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-813934-9.00004-9
  2. Behin, J., Ghadamnan, E., & Kazemian, H. (2019). Recent advances in the science and technology of natural zeolites in Iran. Clay Minerals, 54(2), 131–144. https://doi.org/DOI: 10.1180/clm.2019.19
  3. Bensharada, M., Telford, R., Stern, B., & Gaffney, V. (2022). Loss on ignition vs. thermogravimetric analysis: a comparative study to determine organic matter and carbonate content in sediments. Journal of Paleolimnology, 67(2), 191–197. https://doi.org/10.1007/s10933-021-00209-6
  4. Hartati, Prasetyoko, D., Santoso, M., Qoniah, I., Leaw, W. L., Firda, P. B. D., & Nur, H. (2020). A review on synthesis of kaolin-based zeolite and the effect of impurities. Journal of the Chinese Chemical Society, 67(6), 911–936. https://doi.org/10.1002/jccs.201900047
  5. He, Y., Tang, S., Yin, S., & Li, S. (2021). Research progress on green synthesis of various high-purity zeolites from natural material-kaolin. Journal of Cleaner Production, 306, 127248. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.127248
  6. Krisnandi, Y. K., Parmanti, I. Y., Yunarti, R. T., Sihombing, R., & Saragi, I. R. (2018). Synthesis and Characterization of Zeolite NaY from kaolin Bangka Belitung with variation of synthesis composition and crystallization time. Journal of Physics: Conference Series, 1095(1), 12043. https://doi.org/10.1088/1742-6596/1095/1/012043
  7. Kubů, M., Opanasenko, M., & Vitvarová, D. (2015). Desilication of SSZ-33 zeolite-Post-synthesis modification of textural and acidic properties. Catalysis Today, 243(C), 46–52. https://doi.org/10.1016/j.cattod.2014.07.046
  8. Li, Yi, Li, L., & Yu, J. (2017). Applications of Zeolites in Sustainable Chemistry. Chem, 3(6), 928–949. https://doi.org/https://doi.org/10.1016/j.chempr.2017.10.009
  9. Li, Yichuan, Zhu, G., Wang, Y., Chai, Y., & Liu, C. (2021). Preparation, mechanism and applications of oriented MFI zeolite membranes: A review. Microporous and Mesoporous Materials, 312, 110790. https://doi.org/https://doi.org/10.1016/j.micromeso.2020.110790
  10. Liu, H., Liu, S., Xie, S., Song, C., Xin, W., & Xu, L. (2015). Effect of Desilication on the Performance of Hierarchical ZSM-11 Catalysts for Alkylation of Benzene with Dimethyl Ether. Catalysis Letters, 145(11), 1972–1983. https://doi.org/10.1007/s10562-015-1589-1
  11. Mahima Kumar, M., Senthilvadivu, R., Brahmaji Rao, J. S., Neelamegam, M., Ashok Kumar, G. V. S., Kumar, R., & Jena, H. (2020). Characterization of fly ash by ED-XRF and INAA for the synthesis of low silica zeolites. Journal of Radioanalytical and Nuclear Chemistry, 325(3), 941–947. https://doi.org/10.1007/s10967-020-07243-0
  12. Maurya, A., Singh, S., & Pathak, N. P. (2025). The Importance of Mesoporous Materials (Silica, Alumina, and Zeolite) as Solid Supports for Metal Complex Catalysts in Organic Transformations. Journal of Inorganic and Organometallic Polymers and Materials, 35(1), 1–21. https://doi.org/10.1007/s10904-024-03249-3
  13. Mohebbi, M. (2015). Reliability of Loss on Ignition (LOI) Test for Determining the Unburned Carbon Content in Fly Ash
  14. Moradi, M., Yamini, Y., Kakehmam, J., & Ahmadi, K. (2015). A review in the sample preparation of aqueous solutions combined with X-ray fluorescence detection. Journal of the Iranian Chemical Society, 12(5), 831–838. https://doi.org/10.1007/s13738-014-0545-0
  15. Oliveira, D. S., Lima, R. B., Pergher, S. B. C., & Caldeira, V. P. S. (2023). Hierarchical Zeolite Synthesis by Alkaline Treatment: Advantages and Applications. Catalysts, 13(2), 1–28. https://doi.org/10.3390/catal13020316
  16. Oliveira, J., Mazutti, M., Urquieta, E., Foletto, E., & Jahn, S. L. (2016). Preparation of Mesoporous Fe2O3-Supported ZSM-5 Zeolites by Carbon-Templating and their Evaluation as Photo-Fenton Catalysts to Degrade Organic Pollutant. Materials Research, 19. https://doi.org/10.1590/1980-5373-MR-2016-0367
  17. Otieno, S. O., Kengara, F. O., Kowenje, C. O., & Mokaya, R. (2023). Hydrothermal synthesis of zeolites using silica extracted from tropical volcanic ash. Materials Advances, 4(10), 2292–2300. https://doi.org/https://doi.org/10.1039/d3ma00065f
  18. Pérez-Botella, E., Valencia, S., & Rey, F. (2022). Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chemical Reviews, 122(24), 17647–17695. https://doi.org/10.1021/acs.chemrev.2c00140
  19. Revenko, A. G., & Pashkova, G. V. (2023). X-Ray Fluorescence Spectrometry: Current Status and Prospects of Development. Journal of Analytical Chemistry, 78(11), 1452–1468. https://doi.org/10.1134/S1061934823110072
  20. Silva, A. M., Figueiredo, R. S., & Leao, V. A. (2017). A Comparison Between Recycled Spent Zeolite and Calcite Limestone for Manganese Removal BT - Proceedings of the 3rd Pan American Materials Congress (M. A. Meyers, H. A. C. Benavides, S. P. Brühl, H. A. Colorado, E. Dalgaard, C. N. Elias, R. B. Figueiredo, O. Garcia-Rincon, M. Kawasaki, T. G. Langdon, R. V Mangalaraja, M. C. G. Marroquin, A. da Cunha Rocha, J. M. Schoenung, A. Costa e Silva, M. Wells, & W. Yang (eds.); pp. 107–114). Springer International Publishing
  21. Tazune, F. K., Tchakouté, H. K., Rüscher, C. H., Tchekwagep, J. J. K., & Hou, P. (2024). Effects of Fe2O3/SiO2 Molar Ratios in the Fe-Silica on the Compressive Strengths and Microstructural Properties of Geopolymer Materials Derived from Waste Fired Clay Brick and Metakaolin. Journal of Inorganic and Organometallic Polymers and Materials, 34(4), 1725–1737. https://doi.org/10.1007/s10904-023-02913-4
  22. Touch, N., Hibino, T., Takata, H., & Yamaji, S. (2017). Loss on Ignition-Based Indices for Evaluating Organic Matter Characteristics of Littoral Sediments. Pedosphere, 27(5), 978–984. https://doi.org/10.1016/S1002-0160(17)60487-9
  23. Vogrin, J., Santini, T., Peng, H., Zhao, L., & Vaughan, J. (2023). Synthesis of zeolites using kaolin in concentrated sodium hydroxide-aluminate solutions. Applied Clay Science, 244, 107106. https://doi.org/https://doi.org/10.1016/j.clay.2023.107106
  24. Waghmare, S., & Ghadvir, G. (2023). Study of influence of Zeolite Application in Rigid pavement and Strength Prediction through Regression Analysis. https://doi.org/10.21203/rs.3.rs-3442339/v1
  25. Wang, C., Leng, S., Guo, H., Yu, J., Li, W., Cao, L., & Huang, J. (2019). Quantitative arrangement of Si/Al ratio of natural zeolite using acid treatment. Applied Surface Science, 498, 143874. https://doi.org/https://doi.org/10.1016/j.apsusc.2019.143874
  26. Wang, J.-P., Kim, G.-C., & Go, M.-S. (2020). A Study on the Removal of Heavy Metal with Mg-Modified Zeolite. J Korean Powder Metall Inst, 27(4), 287–292. https://doi.org/10.4150/KPMI.2020.27.4.287
  27. Yang, C., Xie, S., Liu, H., Xin, W., Feng, C., Li, X., Liu, S., Xu, L., & Zeng, P. (2018). IM-5 Zeolite Treated with Mixed Solution of NaOH and TPABr: Characterization and Application for Alkylation of Benzene with Ethanol. Catalysis Letters, 148(7), 2030–2041. https://doi.org/10.1007/s10562-018-2424-2

Last update:

No citation recorded.

Last update:

No citation recorded.