skip to main content

Rancang Bangun Sistem Monitoring Radiasi Sinar-X Berbasis Internet of Things (IoT)

Universitas Negeri Semarang, Indonesia

Open Access Copyright 2025 Jurnal Pengelolaan Laboratorium Pendidikan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Excessive exposure to X-ray radiation can be harmful to human health; therefore, it is important to regularly monitor its intensity, especially in laboratories equipped with ionizing radiation facilities. This research aims to develop an X-ray radiation monitoring system designed to measure radiation levels in the Material Characterization Unit of the Physics Laboratory at Universitas Negeri Semarang. The research method refers to the prototype model, which consists of several stages: communication, quick planning, quick design modeling, and prototype construction. This monitoring system is essential due to the presence of an X-Ray Diffractometer (XRD) machine, which serves as a source of ionizing radiation.

The developed system consists of an X-ray radiation detector integrated with an ESP32 microcontroller that transmits data to a cloud server via a Wi-Fi protocol. The radiation detector used in this monitoring system is a Geiger-Müller counter. The measured radiation data can also be displayed on an OLED 128x64 screen. Data acquisition is recorded online using the Google Sheets Application Programming Interface (API), enabling real-time data logging. Experimental results of radiation measurements inside the XRD unit show a radiation dose of 319.2 µSv at a distance of 30 cm from the tube at an angle of 30°, while environmental radiation measurements indicate a dose of 0.815 µSv. The monitoring system’s measurements were compared with those obtained from a standard survey meter, Ludlum Model 3. The results demonstrate that the developed system is capable of measuring X-ray radiation in real-time and can be effectively used for X-ray radiation monitoring.

Fulltext View|Download
Keywords: Sistem Pemantauan Sinar-X, Internet of Things, Detektor Geiger Muller Counter, Mikrokontroller ESP32

Article Metrics:

  1. Almutairi, B., Akyurek, T., Usman, S., 2019. Voltage dependent pulse shape analysis of Geiger-Müller counter. Nucl. Eng. Technol. 51, 1081–1090. https://doi.org/10.1016/j.net.2019.02.008
  2. Athqiya, A.A., Haqi, D.N., Alayyannur, P.A., Paskarini, I., Sugiharto, F.M., 2019. Hazard Identification, Risk Assessment, and Determining Controls in Laboratories. Indian J. Public Health Res. Dev. 10, 877. https://doi.org/10.5958/0976-5506.2019.01688.7
  3. Basbug, G., Cavicchi, A., Silbey, S.S., 2023. Rank Has Its Privileges: Explaining Why Laboratory Safety Is a Persistent Challenge. J. Bus. Ethics 184, 571–587. https://doi.org/10.1007/s10551-022-05169-z
  4. Cahyaningrum, D., 2020. Program Keselamatan dan Kesehatan Kerja Di Laboratorium Pendidikan
  5. Dabukke, H., Aritonang, F., Sijabat, S., 2021. Analisis Berkas Sinar-X Pada Perisai Radiasi Berbasis Polyester Timbal Asetat Di Murni Teguh Memorial Hospital 9
  6. DeBell, T., Goertzen, L., Larson, L., Selbie, W., Selker, J., Udell, C., 2019. OPEnS Hub: Real-Time Data Logging, Connecting Field Sensors to Google Sheets. Front. Earth Sci. 7, 137. https://doi.org/10.3389/feart.2019.00137
  7. Hariyanto, D., n.d. Studi Intensitas Radiasi Menggunakan Survey Meter Berbasis Tabung Geiger M4011 dan Mikrokontroler Arduino Uno
  8. Harrison, J.D., Balonov, M., Bochud, F., Martin, C., Menzel, H.-G., Ortiz-Lopez, P., Smith-Bindman, R., Simmonds, J.R., Wakeford, R., 2021. ICRP Publication 147: Use of Dose Quantities in Radiological Protection. Ann. ICRP 50, 9–82. https://doi.org/10.1177/0146645320911864
  9. Hussein, A.H., 2019. Internet of Things (IOT): Research Challenges and Future Applications. Int. J. Adv. Comput. Sci. Appl. 10
  10. Jain, S., 2021. Radiation in medical practice & health effects of radiation: Rationale, risks, and rewards. J. Fam. Med. Prim. Care 10, 1520. https://doi.org/10.4103/jfmpc.jfmpc_2292_20
  11. Johari, A.A., Mohamad, E.J., 2022. Development of Alert Radiation Monitoring System, in: Evolution in Electrical and Electronic Engineering, 2. Presented at the Conference on Faculty Electric and Electronic 2020/1, pp. 826–833
  12. Mahammad, D.V., Thong-aram, D., Pencharee, S., 2017. Design and construction of portable survey meter. J. Phys. Conf. Ser. 901, 012056. https://doi.org/10.1088/1742-6596/901/1/012056
  13. Oglat, A.A., 2022. Assessment of Diagnostic Imaging Sector in Public Hospitals in Northern Jordan. Healthcare 10, 1136. https://doi.org/10.3390/healthcare10061136
  14. Prayoga, D.Y., Nuralam, N., 2022. Pemodelan Akuisisi Data Sistem Monitoring Kualitas Air Budidaya Pembenihan Ikan Kerapu. J. Arus Elektro Indones. 8, 71. https://doi.org/10.19184/jaei.v8i3.33656
  15. Pressman, R.S., 2010. Software engineering: a practitioner’s approach, 7th ed. ed. McGraw-Hill Higher Education, New York
  16. Radouan Ait Mouha, R.A., 2021. Internet of Things (IoT). J. Data Anal. Inf. Process. 09, 77–101. https://doi.org/10.4236/jdaip.2021.92006
  17. Rangan, A.Y., Amelia Yusnita, Muhammad Awaludin, 2020. Sistem Monitoring berbasis Internet of things pada Suhu dan Kelembaban Udara di Laboratorium Kimia XYZ. J. E-Komtek Elektro-Komput.-Tek. 4, 168–183. https://doi.org/10.37339/e-komtek.v4i2.404
  18. Rosyidi, H.S., Suseno, J.E., 2016. Sistem monitoring jarak jauh radiasi gamma secara realtime berbasis web server 5
  19. Sayono, S., Sujitno, T., 2010. Pengaruh tekanan gas isian argon-etanol dan argon-brom terhadap unjuk kerja detektor geiger-mueller. Ganendra maj. Iptek nukl. 13. https://doi.org/10.17146/gnd.2010.13.2.48
  20. Sunardi, J., Harsono, D., Harsono, A.B., n.d. Rancang Bangun Sistem Akuisisi Data Untuk Pencarian Sumber Radiasi Nuklir Menggunakan Robot Hexapod. J. Forum Nukl. 7, 196–206. https://doi.org/10.17146/jfn.2013.7.2.3460
  21. Yuniarsari, L., 2015. Sistem deteksi monitor lingkungan. J. Perangkat Nukl. 09, 28–36

Last update:

No citation recorded.

Last update:

No citation recorded.