SIMULASI PERUBAHAN PENGGUNAAN LAHAN DENGAN KONSEP CELLULER AUTOMATA DI KOTA MATARAM
Abstract
Dinamika perubahan penggunaan lahan dapat dipahami secara spasial dengan memanfaatkan data penginderaan jauh dan sistem informasi geografis. Penelitian ini bertujuan membangun model perubahan penggunaan lahan di Kota Mataram untuk memprediksi penggunaan lahan di Kota Mataram pada tahun2031. Model yang dibangun adalah hasil analisis spasial dari pola perubahan penggunaan lahan dari kurun waktu tahun 2008 sampai tahun 2017 dengan menggunakan konsep cellular automata. Penentuan aturan transisi dan faktor-faktor pendorong perubahan lahan serta nilai pengaruh (bobot) masing-masing faktor tersebut merupakan hal yang penting untuk membangun model prediksi perubahan lahan. Hasil perhitungan validitas model menujukkan tingkat akurasi model sebesar 84,18%. Dari tahun 2017 sampai tahun 2031 terjadi peningkatan secara signifikan luasan penggunaan lahan industri dan pergudangan, perdagangan dan jasa, dan permukiman di Kota Mataram berturut-turut sebesar 9,861 hektar, 355,354 hektar, dan 482,697 hektar. Pemanfaatan simulasi perubahan penggunaan lahan dengan konsep Cellular Automata ini dapat diterapkan untuk mengevaluasi Rencana Tata Ruang dan Wilayah Kota.
References
Aryany, P. A., & Pradoto, W. (2014). Perubahan Penggunaan Lahan Di Kawasan Sekitar Bukit Semarang Baru. Jurnal Teknik PWK, 3(1), 96–105.
Barredo JI, Kasanko M, McCormick N, Lavalle C (2003) Modelling dynamic spatial processes: simulation of urban future scenarios
through cellular automata. Landsc Urban Plan 64:145–160
Bogaert, P., & Dendoncker, N. (2007). Spatial analysis and modelling of land use distributions in Belgium Spatial analysis and modelling of land use distributions in Belgium. Computers, Environment and Urban Systems,31(April 2015), 188–205. https://
doi.org/10.1016/j.compenvurbsys.2006.06.004
Chapin, F. S., & Edward J. K.( 1985). Urban Land Use Planning. Cichago: University of Illinois Press.
Cohen, B. (2006). Urban growth in developing countries: current trends, future projections, and key challenges for sustainability. Technology and Society, 28, 63-80. http://dx.doi.org/10.1016/j.techsoc.2005.10.005.
Dadras, M., Shafri, H. Z. M., Ahmad, N., Pradhan, B.,
& Safarpour, S. (2015). Spatio-temporal analysis of urban growth from remote sensing data in Bandar Abbas city, Iran. Egyptian Journal of Remote
Sensing and Space Science, 18(1), 35–52. https:// doi.org/10.1016/j.ejrs.2015.03.005
Deep, S., & Saklani, A. (2014). Urban sprawl modeling using cellular automata. Egyptian Journal of Remote Sensing and Space Science, 17(2), 179–187.
Fuglsang, M., Münier, B., & Hansen, H. S. (2013). Modelling land-use effects of future urbanization using cellular automata: An Eastern Danish case. Environmental Modelling and Software, 50, 1–11.
Gharbia, S. S., Alfatah, S. A., Gill, L., Johnston, P., & Pilla, F. (2016). Land use scenarios and projections simulation using an integrated GIS cellular automata algorithms. Modeling Eataman kota Systems and Environment, 2(3), 151.
Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T., &
Hokao, K. (2011). Modeling urban land use
change by the integration of cellular automaton and Markov model. Ecological Modelling, 222(20–22), 3761–3772. https://doi.org/10.1016/j. ecolmodel.2011.09.009
Gu, W., Guo, J., Fan, K., & Chan, E. H. W. (2016). Dynamic Land Use Change and Sustainable Urban Development in a Third-tier City within Yangtze Delta. Procedia Environmental Sciences, 36, 98–105.
Liu, D., Zheng, X., Zhang, C., & Wang, H. (2017). A new temporal–spatial dynamics method of simulating land-use change. Ecological Modelling, 350, 1–10. https://doi.org/10.1016/j.ecolmodel.2017.02.005.
Liu, Y., & He, J. (2009). Developing a web-based cellular automata model for urban growth simulation, 7492, 1–8. https://doi.org/10.1117/12.83865
Mosammam, H. M., Nia, J. T., Khani, H., Teymouri, A., & Kazemi, M. (2017). Monitoring land use change and measuring urban sprawl based on its spatial forms: The case of Qom city. Egyptian Journal of Remote Sensing and Space Science, 20(1), 103–116. https://doi.org/10.1016/j.ejrs.2016.08.002
Pratomoadmojo, N. A. (2018). LanduseSim Algorithm : Land use change modelling by means of Cellular Automata and Geographic Information System LanduseSim Algorithm : Land use change modelling by means of Cellular Automata and Geographic Information System. Surabaya. https://doi.org/10.1088/1755-1315/202/1/012020
Rencana Pembangunan Jangka Menengah Daerah Kota Mataram (2016). Mataram :Bappeda Kota Mataram.
Sadewo, M. N., & Buchori, I. (2018). Simulasi Perubahan Penggunaan Lahan Akibat Pembangunan Kawasan Industri Kendal (KIK) Berbasis Cellular Automata. Majalah Geografi Indonesia, 1790, 142–154. https://doi.org/10.22146/mgi.33755
Sahana, M., Sajjad, H., & Punir, N. (2016). Analyzing urban spatial patterns and trends of urban growth using urban sprawl matrix: A study on Kolkata urban agglomeration, India. Science of the Total Environment, 628–629, 105–108.
Torrens, P. M. (2003). Automata ‐ based models of
urban systems. In In Advanced Spatial Analysis, P.Longley & M. Batty (Eds.) (pp. 61–79). Redlands:ESRI Press.
United Nations (UN). (2017). World Urbanization Prospects (the 2016 revisions). New York: Author.
Wolfram, S. (1984). Cellular automata as simple selforganizing systems. Elsevier Science Publishers B.V. Retrieved from http://cds.cern.ch/record/140047
White R, Engelen G, Uljee I (1997) The use of constrained cellular automata for high-resolution modelling of urban land-use
dynamics. Environ Plan 24:323–343
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Jurnal Pengembangan Kota
License URL: http://creativecommons.org/licenses/by-nc-sa/4.0