ANALISIS SPASIAL KERAPATAN VEGETASI KOTA AMBON BERBASIS NORMALIZED DIFFERENCE VEGETATION INDEX (NDVI)

Mohammad Amin Lasaiba, Edward Gland Tetelepta
DOI: 10.14710/jpk.11.2.124-139

Abstract


Perencanaan dan pengelolaan kota merupakan hal yang kompleks sebagai dampak dari proses urbanisasi yang mempengaruhi tutupan lahan dan terkait erat dengan aktivitas manusia yang secara efektif mencerminkan atribut sosial ekonomi. Identifikasi yang akurat pada pola tutupan lahan perkotaan sangat penting untuk optimasi rasional terhadap struktur perkotaan dan memainkan peran kunci dalam terhadap berbagai perubahan yang memengaruhi ekosistem dan keanekaragaman hayati. Tujuan penelitian yang akan dicapai yaitu untuk menganalisis kerapatan vegetasi Kota Ambon berbasis Normalized Difference Vegetation Index (NDVI), dengan penggunaan data spasial penginderaan jauh citra satelit Landsat 8 OLI/TIRS Path 109 Row 63.  Hasil penelitian yang dilakukan dengan menggunakan citra penginderaan jauh Landsat 8 OLI/TIRS perekaman 24 Maret 2022 Kota Ambon diklasifikasikan menjadi 5 kelas kerapatan vegetasi. Tingkat kerapatan tidak terinterpretasi (awan) memiliki luas 302,68 Ha (0.9%), Tingkat kerapatan tidak rapat memiliki luas 716,33 Ha (2.7%), Tingkat kerapatan cukup rapat memiliki luas 1367 Ha (4.2%), Tingkat kerapatan rapat memiliki luasan 3.154,70 Ha (9.7%), Tingkat kerapatan sangat rapat memiliki luasan 27.026,43 Ha (83%).


Keywords


Spasial; Kerapatan Vegetasi; NDVI; Kota

Full Text: PDF

References


Ahmadian, N., Ghasemi, S., Wigneron, J.-P., & Zölitz, R. (2016). Comprehensive Study of the Biophysical Parameters of Agricultural Crops based on Assessing Landsat 8 OLI and Landsat 7 ETM+ Vegetation Indices. GIScience & Remote Sensing, 53(3), 337-359. Doi:10.1080/15481603.2016.1155789

Ahmed, N. (2016). Application of NDVI in Vegetation Monitoring Using GIS and Remote Sensing in Northern Ethiopian Highlands. Abyssinia Journal of Science and Technology, 1(1), 12-17.

Akinsanola, A. A., & Babalola, O. S. (2016). Change Detection in Land Surface Temperature and Land Use Land Cover over Lagos Metropolis, Nigeria. Journal of Remote Sensing & GIS, 5(3), 1-7. Doi:10.4172/2469-4134.1000171

Blaschke, T. (2013). Object Based Image Analysis: A New Paradigm in Remote Sensing. Paper presented at the ASPRS Annual Conference, March, Baltimore, Maryland.

Bren d’Amour, C., Reitsma, F., Baiocchi, G., Barthel, S., Güneralp, B., Erb, K.-H., . . . Seto, K. C. (2017). Future Urban Land Expansion and Implications for Global Croplands. Proceedings of the National Academy of Sciences, 114(34), 8939-8944. Doi:10.1073/pnas.1606036114

Congalton, R. G. (1991). A Review of Assessing The Accuracy of Classifications of Remotely Sensed Data. Remote Sensing of Environment, 37(1), 35-46. Doi:https://doi.org/10.1016/0034-4257(91)90048-B

Congalton, R. G., & Green, K. (2019). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Third Edition (3rd ed.). Boca Raton: CRC Press.

Crooks, A., Pfoser, D., Jenkins, A., Croitoru, A., Stefanidis, A., Smith, D., . . . Lamprianidis, G. (2015). Crowdsourcing Urban Form and Function. International Journal of Geographical Information Science, 29(5), 720-741. Doi:10.1080/13658816.2014.977905

Deng, X., Wu, L., He, C., & Shao, H. (2022). Study on Spatiotemporal Variation Pattern of Vegetation Coverage on Qinghai–Tibet Plateau and the Analysis of Its Climate Driving Factors. International Journal of Environmental Research and Public Health, 19(14), 8836. Doi:10.3390/ijerph19148836

Diem, P. K., Nguyen, C. T., Diem, N. K., Diep, N. T. H., Thao, P. T. B., Hong, T. G., & Phan, T. N. (2024). Remote Sensing for Urban Heat Island Research: Progress, Current Issues, and Perspectives. Remote Sensing Applications: Society and Environment, 33, 101081. Doi:https://doi.org/10.1016/j.rsase.2023.101081

Du, J., Shu, J., Yin, J., Yuan, X., Jiaerheng, A., Xiong, S., . . . Liu, W. (2015). Analysis on Spatio-Temporal Trends and Drivers in Vegetation Growth During Recent Decades in Xinjiang, China. International Journal of Applied Earth Observation and Geoinformation, 38, 216-228. Doi:https://doi.org/10.1016/j.jag.2015.01.006

Foody, G. M. (2002). Status of Land Cover Classification Accuracy Assessment. Remote Sensing of Environment, 80(1), 185-201. Doi:https://doi.org/10.1016/S0034-4257(01)00295-4

Gandhi, G. M., Parthiban, S., Thummalu, N., & Christy, A. (2015). Ndvi: Vegetation Change Detection Using Remote Sensing and Gis – A Case Study of Vellore District. Procedia Computer Science, 57, 1199-1210. Doi:https://doi.org/10.1016/j.procs.2015.07.415

Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2013). Multivariate Data Analysis. London: Pearson.

Han, W., Zhang, X., & Zheng, X. (2020). Land Use Regulation and Urban Land Value: Evidence from China. Land Use Policy, 92, 104432. Doi:https://doi.org/10.1016/j.landusepol.2019.104432

Hersperger, A. M., Oliveira, E., Pagliarin, S., Palka, G., Verburg, P., Bolliger, J., & Grădinaru, S. (2018). Urban Land-Use Change: The Role of Strategic Spatial Planning. Global Environmental Change, 51, 32-42. Doi:https://doi.org/10.1016/j.gloenvcha.2018.05.001

Huang, J., Wang, H., Dai, Q., & Han, D. (2014). Analysis of NDVI Data for Crop Identification and Yield Estimation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(11), 4374-4384. Doi:10.1109/JSTARS.2014.2334332

Huang, S., Tang, L., Hupy, J. P., Wang, Y., & Shao, G. (2021). A Commentary Review on The Use of Normalized Difference Vegetation Index (NDVI) in The Era of Popular Remote Sensing. Journal of Forestry Research, 32(1), 1-6. Doi:10.1007/s11676-020-01155-1

Ibrahim, G. R. F. (2017). Urban Land Use Land Cover Changes and Their Effect on Land Surface Temperature: Case Study Using Dohuk City in the Kurdistan Region of Iraq. Climate, 5(1), 13. Doi:10.3390/cli5010013

IPCC. (2019). Climate Change and Land. Retrieved from https://www.ipcc.ch/srccl/

Izah, A., Shafarani, F. K., Afrianto, F., & Permana, M. (2023). Hubungan Antara Kepadatan Vegetasi Dan Land Surface Temperature di Kabupaten Pasuruan. Jurnal Plano Buana, 4(1), 12-21. Doi:https://doi.org/10.36456/jpb.v4i1.7533

Jia, K., Li, Y., Liang, S., Wei, X., & Yao, Y. (2017). Combining Estimation of Green Vegetation Fraction in an Arid Region from Landsat 7 ETM+ Data. Remote Sensing, 9(11). Retrieved from Doi:10.3390/rs9111121

Jiang, S., Alves, A., Rodrigues, F., Ferreira, J., & Pereira, F. C. (2015). Mining Point-of-Interest Data From Social Networks for Urban Land Use Classification and Disaggregation. Computers, Environment and Urban Systems, 53, 36-46. Doi:https://doi.org/10.1016/j.compenvurbsys.2014.12.001

Jiang, Z., Huete, A. R., Didan, K., & Miura, T. (2008). Development of a Two-Band Enhanced Vegetation Index Without A Blue Band. Remote Sensing of Environment, 112(10), 3833-3845. Doi:https://doi.org/10.1016/j.rse.2008.06.006

Kamusoko, C. (2021). Optical and SAR Remote Sensing of Urban Areas: A Practical Guide. Jerman: Springer Nature.

Karaburun, A. (2010). Estimation of C Factor for Soil Erosion Modeling Using NDVI in Buyukcekmece Watershed. Ozean Journal of applied sciences, 3(1), 77-85.

Karthikeyan, L., Chawla, I., & Mishra, A. K. (2020). A Review of Remote Sensing Applications in Agriculture For Food Security: Crop Growth and Yield, Irrigation, and Crop Losses. Journal of Hydrology, 586, 124905. Doi:https://doi.org/10.1016/j.jhydrol.2020.124905

Kobayashi, N., Tani, H., Wang, X., & Sonobe, R. (2020). Crop Classification Using Spectral Indices Derived from Sentinel-2a Imagery. Journal of Information and Telecommunication, 4(1), 67-90. Doi:10.1080/24751839.2019.1694765

Lasaiba, M. A. (2012). Perubahan Penggunaan Lahan di Kota Ambon Tahun 2002-2009. (Disertasi), Universitas Gadjah Mada. Retrieved from http://etd.repository.ugm.ac.id/penelitian/detail/54572

Li, L., Shen, G., Zhao, C., Moscibroda, T., Lin, J.-H., & Zhao, F. (2014). Experiencing and Handling The Diversity in Data Density and Environmental Locality in an Indoor Positioning Service. Paper presented at the Proceedings of the 20th Annual International Conference on Mobile Computing and Networking.

Li, W., Dong, R., Fu, H., Wang, J., Yu, L., & Gong, P. (2020). Integrating Google Earth Imagery With Landsat Data to Improve 30-M Resolution Land Cover Mapping. Remote Sensing of Environment, 237, 111563. Doi:https://doi.org/10.1016/j.rse.2019.111563

Lyu, Y., Wang, M., Zou, Y., & Wu, C. (2022). Mapping Trade-Offs Among Urban Fringe Land Use Functions to Accurately Support Spatial Planning. Science of The Total Environment, 802, 149915. Doi:https://doi.org/10.1016/j.scitotenv.2021.149915

Ma, Y., & Xu, R. (2010). Remote Sensing Monitoring and Driving Force Analysis of Urban Expansion in Guangzhou City, China. Habitat International, 34(2), 228-235. Doi:https://doi.org/10.1016/j.habitatint.2009.09.007

Malinowski, R., Lewiński, S., Rybicki, M., Gromny, E., Jenerowicz, M., Krupiński, M., . . . Schauer, P. (2020). Automated Production of a Land Cover/Use Map of Europe Based on Sentinel-2 Imagery. Remote Sensing, 12(21), 3523. Doi:10.3390/rs12213523

Mather, P., & Tso, B. (2016). Classification Methods for Remotely Sensed Data. Amerika Serikat: CRC press.

OECD. (2018). Monitoring Land Cover Change. from Oecd https://www.oecd.org/env/indicators-modelling-outlooks/monitoring-land-cover-change.htm

Palumbo, I., Rose, R. A., Headley, R. M., Nackoney, J., Vodacek, A., & Wegmann, M. (2017). Building Capacity in Remote Sensing for Conservation: Present and Future Challenges. Remote Sensing in Ecology and Conservation, 3(1), 21-29. Doi:https://doi.org/10.1002/rse2.31

Pandey, J., & Pathak, D. (2014). Remote Sensing and Digital Image Processing GNSS Remote Sensing Vol. 22. Geographic Information System Retrieved from http://www.springer.com/series/6477

Pantho, M. J., Ishmam, Z. S., Hafiz, A. M. I., & Rahman, M. M. (2022). Ndvi: Detection of Vegetation Change Using Remote Sensing and Gis-a Study on Barishal City Corporation, Bangladesh. Paper presented at the Proceedings of the 6th International Conference on Civil Engineering for Sustainable Development (ICCESD 2022), Khulna, Bangladesh.

Robinson, N. P., Allred, B. W., Jones, M. O., Moreno, A., Kimball, J. S., Naugle, D. E., . . . Richardson, A. D. (2017). A Dynamic Landsat Derived Normalized Difference Vegetation Index (NDVI) Product for the Conterminous United States. Remote Sensing, 9(8). Retrieved from Doi:10.3390/rs9080863

Rogan, J., & Chen, D. (2004). Remote Sensing Technology for Mapping and Monitoring Land-Cover and Land-Use Change. Progress in Planning, 61(4), 301-325. Doi:https://doi.org/10.1016/S0305-9006(03)00066-7

Sandholt, I., Rasmussen, K., & Andersen, J. (2002). A Simple Interpretation of The Surface Temperature/Vegetation Index Space for Assessment of Surface Moisture Status. Remote Sensing of Environment, 79(2), 213-224. Doi:https://doi.org/10.1016/S0034-4257(01)00274-7

Seto, K. C., Güneralp, B., & Hutyra, L. R. (2012). Global Forecasts of Urban Expansion to 2030 and Direct Impacts on Biodiversity and Carbon Pools. Proceedings of the National Academy of Sciences, 109(40), 16083-16088. Doi:doi:10.1073/pnas.1211658109

Shahtahmassebi, A. R., Li, C., Fan, Y., Wu, Y., lin, Y., Gan, M., . . . Blackburn, G. A. (2021). Remote Sensing of Urban Green Spaces: A Review. Urban Forestry & Urban Greening, 57, 126946. Doi:https://doi.org/10.1016/j.ufug.2020.126946

Singgalen, Y. A. (2023). Implementasi Hyper Spectral of Remote Sensing untuk Analisis Kawasan Ekowisata Mangrove Potensial di Kecamatan Tobelo Timur Menggunakan NDVI, SAVI, dan EVI. Journal of Information System Research (JOSH), 4(3), 928-935. Doi:https://doi.org/10.47065/josh.v4i3.3378

Sun, W., Song, X., Mu, X., Gao, P., Wang, F., & Zhao, G. (2015). Spatiotemporal Vegetation Cover Variations Associated With Climate Change and Ecological Restoration in The Loess Plateau. Agricultural and Forest Meteorology, 209-210, 87-99. Doi:https://doi.org/10.1016/j.agrformet.2015.05.002

Tagesson, T., Horion, S., Nieto, H., Zaldo Fornies, V., Mendiguren González, G., Bulgin, C. E., . . . Fensholt, R. (2018). Disaggregation of SMOS Soil Moisture Over West Africa Using The Temperature and Vegetation Dryness Index based on SEVIRI Land Surface Parameters. Remote Sensing of Environment, 206, 424-441. Doi:https://doi.org/10.1016/j.rse.2017.12.036

Tewabe, D., & Fentahun, T. (2020). Assessing Land Use and Land Cover Change Detection Using Remote Sensing in The Lake Tana Basin, Northwest Ethiopia. Cogent Environmental Science, 6(1), 1778998. Doi:10.1080/23311843.2020.1778998

Thenkabail, P. S., Biradar, C. M., Noojipady, P., Dheeravath, V., Li, Y., Velpuri, M., . . . Dutta, R. (2009). Global Irrigated Area Map (GIAM), Derived from Remote Sensing, for The End of The Last Millennium. International Journal of Remote Sensing, 30(14), 3679-3733. Doi:10.1080/01431160802698919

Tian, F., Fensholt, R., Verbesselt, J., Grogan, K., Horion, S., & Wang, Y. (2015). Evaluating Temporal Consistency of Long-Term Global NDVI Datasets for Trend Analysis. Remote Sensing of Environment, 163, 326-340. Doi:https://doi.org/10.1016/j.rse.2015.03.031

Verbesselt, J., Zeileis, A., & Herold, M. (2012). Near Real-Time Disturbance Detection Using Satellite Image Time Series. Remote Sensing of Environment, 123, 98-108. Doi:https://doi.org/10.1016/j.rse.2012.02.022

Wahab, I., Hall, O., & Jirström, M. (2018). Remote Sensing of Yields: Application of UAV Imagery-Derived NDVI for Estimating Maize Vigor and Yields in Complex Farming Systems in Sub-Saharan Africa. Drones, 2(3). Retrieved from Doi:10.3390/drones2030028

Wang, Q., Moreno-Martínez, Á., Muñoz-Marí, J., Campos-Taberner, M., & Camps-Valls, G. (2023). Estimation of vegetation traits with kernel NDVI. ISPRS Journal of Photogrammetry and Remote Sensing, 195, 408-417. Doi:https://doi.org/10.1016/j.isprsjprs.2022.12.019

Weng, Q. (2012). Remote Sensing of Impervious Surfaces in The Urban Areas: Requirements, Methods, and Trends. Remote Sensing of Environment, 117, 34-49. Doi:https://doi.org/10.1016/j.rse.2011.02.030

Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of Land Surface Temperature–Vegetation Abundance Relationship for Urban Heat Island Studies. Remote Sensing of Environment, 89(4), 467-483. Doi:https://doi.org/10.1016/j.rse.2003.11.005

Wulandari, N. (2020). Penggunaan Metode NDVI (Normalized Difference Vegetation Index) dan Savi (Soil Adjusted Vegetation Index) untuk Mengetahui Ketersediaan Ruang Terbuka Hijau Terhadap Pemenuhan Kebutuhan Oksigen (Studi Kasus: Kota Yogyakarta). (Doctoral dissertation), Institut Teknologi Nasional Malang.

Wulder, M. A., White, J. C., Loveland, T. R., Woodcock, C. E., Belward, A. S., Cohen, W. B., . . . Roy, D. P. (2016). The Global Landsat Archive: Status, Consolidation, and Direction. Remote Sensing of Environment, 185, 271-283. Doi:https://doi.org/10.1016/j.rse.2015.11.032

Xue, J., & Su, B. (2017). Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. Journal of sensors, 2017. Doi:https://doi.org/10.1155/2017/1353691

Yao, Y., Yan, X., Luo, P., Liang, Y., Ren, S., Hu, Y., . . . Guan, Q. (2022). Classifying Land-Use Patterns by Integrating Time-Series Electricity Data and High-Spatial Resolution Remote Sensing Imagery. International Journal of Applied Earth Observation and Geoinformation, 106, 102664. Doi:https://doi.org/10.1016/j.jag.2021.102664

Ye, C., Zhang, F., Mu, L., Gao, Y., & Liu, Y. (2020). Urban Function Recognition by Integrating Social Media and Street-Level Imagery. Environment and Planning B: Urban Analytics and City Science, 48(6), 1430-1444. Doi:10.1177/2399808320935467

Zhang, X., Du, S., & Wang, Q. (2017). Hierarchical Semantic Cognition for Urban Functional Zones With VHR Satellite Images and POI Data. ISPRS Journal of Photogrammetry and Remote Sensing, 132, 170-184. Doi:https://doi.org/10.1016/j.isprsjprs.2017.09.007

Zhang, X., Nan, Z., Sheng, Y., Zhao, L., Zhou, G., Yue, G., & Wu, J. (2010, 25-30 July 2010). Analysis of Time-Series Modis 250m Vegetation Index Data for Vegetation Classifiation in The Wenquan Area Over The Qinghai-Tibet Plateau. Paper presented at the 2010 IEEE International Geoscience and Remote Sensing Symposium.

Zhang, Y., Migliavacca, M., Penuelas, J., & Ju, W. (2021). Advances in Hyperspectral Remote Sensing of Vegetation Traits and Functions. Remote Sensing of Environment, 252, 112121. Doi:https://doi.org/10.1016/j.rse.2020.112121

Zhou, X., & Wang, Y.-C. (2011). Spatial–Temporal Dynamics of Urban Green Space in Response to Rapid Urbanization and Greening Policies. Landscape and Urban Planning, 100(3), 268-277. Doi:https://doi.org/10.1016/j.landurbplan.2010.12.013


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Pengembangan Kota

License URL: http://creativecommons.org/licenses/by-nc-sa/4.0