skip to main content

Data validation of gravity field and satellite data using correlation and coherence method

*rina dwi indriana orcid scopus  -  Physic Department, Faculty of Science and mathematics, Diponegoro University, Semarang, Indonesia
M. Irham Nurwidyanto  -  Physic Department, Faculty of Science and mathematics, Diponegoro University, Semarang, Indonesia
Laode M. Sabri  -  Geodesy Department, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
Received: 30 Oct 2020; Revised: 21 Nov 2020; Accepted: 24 Nov 2020; Available online: 30 Nov 2020; Published: 30 Nov 2020.

Citation Format:
Abstract

Satellite data is frequently used as an initial study of a research area for its easy to access feature as well as its improving quality. One of the available satellite data is geopotential data. Satellite data is commonly used to be correlated to the topography data. In this research, satellite data is used as the database of validation in a research area. Valid measuring data is highly required, so that the qualified data is obtained for further process. To identify the validity, additional other QC is required than the existing QC which in 1D. The validation method which applied are correlation and coherence method. The distribution of correlation and coherence values show  asimilirity or compatibility of field data with satellite data. The correlation method was calculate in 2D and the coherence in 1D. Correlation calculation of field data produces high correlation and coherence value to satellite data as much as 0.7 to 0.95 so that it could be identified that acquisition and data processing have been carried out correctly.

Fulltext View|Download
Keywords: Real gravity data, Satelit gravity data, Correlatin, Coherency

Article Metrics:

  1. .Aziz, K. N., Hartantyo, E., & Niasari, S. W. (2018). The Study of Fault Lineament Pattern of the Lamongan Volcanic Field Using Gravity Data. Journal of Physics: Conference Series
  2. .Sudrajat, B., 2018, Pemodelan Struktur Bawah Permukaan Wilayah Kabupaten Nabire di Bagian Utara Leher Burung Pulau Papua Menggunakan Pemodelan Inversi Tiga Dimensi (3D) dan Analisis Horisontal Derivatif Berdasarkan Data Anomali Gravitasi GGMplus, Universitas Gadjah Mada
  3. .Sedighi, M., Tabatabaee, S. H., & Najafi-Alamdari, M. (2009). Comparison of different gravity field implied density models of the topography. Acta Geophysica, 57(2), 257–270
  4. .Triswi, N., 2018, Interpretasi Struktur Bawah Permukaan Cekungan Serayu Selatan Bagian Timur Menggunakan Analisis Data Gravitasi Ggmplus (V,2013), Universitas Gadjah Mada
  5. .Hirt, C., Kuhn, M., Claessens, S., Pail, R., Seitz, K., & Gruber, T. (2014). Study of the Earth’s short-scale gravity field using the ERTM2160 gravity model. Computers and Geosciences
  6. .Broerse, D.B.T., L.L.A.Vermeersena, and R.E.M. Rivaa, 2014, Ocean contributionto co-seismic crustal deformation and geoid anomalies: application to the 2004 December 26 Sumatra-Andaman earthquake
  7. .Lech, K., and S. Wybraniec, M. Grad, 2015, Lithospheric Density Structure Studyby Isostatic Modelling of the European Geoid. Stud. Geophys. Geod., 59, 212-252, https://doi.org/ 10.1007/s11200-014-1014-z
  8. .Hlavnova, P., Bielik, M., Dererova, J., Kohut, I.,and Pasiakova, M., 2015, A New Lithospheric Model in the Eastern Part of the Western Carpatians: 2D Integrated Modelling. Contributions to Geophysics and Geodesy, v. 45(1), 13–23. doi: 10.1515/congeo-2015-0010
  9. .Kloch Glowka. G, J. Krynski, and M. Szelachowska, 2012, Time Variation of Gravity Filed over Europe Obtained from GRACE Data, Reports on Geodesy, Vol. 92, 175 – 190
  10. .Park, Sang-Hoon, and Seok-Woo Hong., 2013, Coseismic geoid height changes of the 201 1Tohoku-Oki earthquake in GRACE monthly gravity data, Advance Science and Technology Letters, v.32, 47-49, http://.doi.org/10.14257/ astl.2013.32.11
  11. .Sarwono, J., 2009, Statistik Itu Mudah: Panduan Lengkap untuk Belajar Komputasi Statistik Menggunakan SPSS 16, Yogyakarta, Penerbit Universitas Atma Jaya Yogyakarta
  12. Stoica, P., and R. Moses. Introduction to Spectral Analysis. Upper Saddle River, NJ: Prentice-Hall,2005. pp.67-68
  13. Kay, S.M. Modern Spectral Estimation. Englewood Cliffs, NJ: Prentice-Hall, 1988. pp.453-455.[3] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal Processing. EnglewoodCliffs, NJ: Prentice-Hall, 1975
  14. Welch, P.D. "The Use of Fast FourierTransform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms." IEEE® Trans.Audio Electroacoust. Vol. AU-15 (June 1967), pp. 70-73
  15. Orfanidis, S.J., Optimum Signal Processing. An Introduction. 2nd Edition, Prentice-Hall,Englewood Cliffs, NJ, 1996

Last update:

No citation recorded.

Last update:

No citation recorded.