Generation of monocycle efficient terahertz pulses by optical rectification in LiNBO3 at 800 nm

*Ali Khumaeni  -  Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Indonesia
Hideaki Kitahara,  -  Research Center for Development of Far Infrared Region, University of Fukui, Japan
Takashi Furuya  -  Research Center for Development of Far Infrared Region, University of Fukui, Japan
Kohji Yamamoto  -  Research Center for Development of Far Infrared Region, University of Fukui, Japan
Masahiko Tani  -  Research Center for Development of Far Infrared Region, University of Fukui, Japan
Received: 14 Dec 2018; Published: 14 Dec 2018.
Open Access
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Article Info
Section: Articles
Language: EN
Full Text:
Statistics: 198 178

Generation of efficient terahertz (THz) pulses was experimentally made by tilted pump pulse front scheme with a Mg-doped LiNbO3 crystal. In this study, a spitfire laser (Ti:sapphire laser, 800 nm, 3 mJ, 1 kHz) was used as an optical source for the generation and detection of THz pulses. The electro-optic (EO) detection optics consisting of a ZnTe crystal (1 mm in thickness) and a balanced photodetector was used. To obtain optimum THz characteristics and pump to THz power conversion efficiency, the image of the grating was made coincides with the tilted pump pulse front. The maximum THz electric field of 8.5 kV/cm and the frequency bandwidth of 2.5 THz were achieved by using pump pulse energy of 2.4 mJ and pump pulse width of 100 fs. The THz energy of 4.15 μJ was obtained and pump-to-THz conversion efficiency was estimated to be approximately 1.73 x 10-3.
Efficient terahertz pulse generation;Optical rectification;Tilted pump pulse front scheme;Femtosecond laser;LiNbO 3 crystal

Article Metrics:

  1. M. Tonouchi, “Cutting-edge terahertz technology”, Nat. Photonics 1, 97-105 (2007).
  2. D. Saeedkia, Handbook of Terahertz Technology for Imaging, Sensing, and Communications (Woodhead Publishing, Oxford, 2013).
  3. J. Orenstein and J. S. Dodge, “Terahertz time- domain spectroscopy of transient metallic and superconducting states”, Phys. Rev. B 92, 134507 (2015).
  4. E. Castro-Camus, M. Palomar, and A. A. Covarrubias, “Leaf water dynamics of Arabidopsis thaliana monitored in-vivo using terahertz time-domain spectroscopy”, Scientific Reports 3, 2910 1-5(2013).
  5. K. I. Zaytsev, A. A. Gavdush, S. P. Lebedev, V. E. Karasik, S. O. Yurchenko, “A method of studying spectral optical characteristics of a homogeneous medium by means of terahertz time-domain spectroscopy”, Optics and Spectroscopy 118, 552-562 (2015).
  6. R. Li, J. A. Zeitler, D. Tomerini, E. P. J. Parrot, L. F. Gladden, and G. M. Day, “A study into the effect of subtle structural details and disorder on the terahertz spectrum of crystalline benzoic acid”, Phys. Chem. Chem. Phys. 12, 5329-5340 (2010).
  7. A. I. McIntosh, B. Yang, S. M. Goldup, M. Watkinson, and R. S. Donnan, “Terahertz spectroscopy: a powerful new tool for the chemical sciences?”, Chem. Soc. Rev. 41, 2072- 2082 (2012).
  8. R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy”, Rev. Mod. Phys. 83, 543 (2011).
  9. K. H. Jin, Y. –G. Kim, S. H. Cho, J. C. Ye, D. –S. Ye, High-speed terahertz reflection three- dimensional imaging for nondestructive evaluation”, Opt. Express 20, 25432-25440 (2012).
  10. T. Ouchi, K. Kajiki, T. Koizumi, T. Itsuji, Y. Koyama, R. Sekiguchi, O. Kubota, and K. Kawase, Terahertz imaging system for medical applications and related high efficiency terahertz devices”, J. Infrared, Millimeter, and Terahertz Waves 35, 118-130 (2014).
  11. E. P. J. Parrot, Y. Sun, E. P. –MacPherson, Terahertz spectroscopy: its future role in medical diagnoses”, J. Molec. Struct. 1006, 66-76 (2011).
  12. H. Hirori and K. Tanaka, “Nonlinear optical phenomena induced by intense single-cycle terahertz pulses”, IEEE J. Selected Topic in Quantum Electronics 19, 8401110 (2013).
  13. G. M. H. Knippels, R. F. X. A. M. Mols, A. F. G. Van der Meer, D. Oepts, P. W. van Amersfoort, “Intense far-infrared free-electron laser pulses with a length of six optical cycles”, Phys. Rev. Lett. 75, 1755 (1995).
  14. S. L. Dexheimer, Terahertz Spectroscopy: Principles and Applications (CRC Press, Taylor and Francis Group, Boca Raton, 2008).
  15. M. Beck, H. Schäfer, G. Klatt, J. Demsar, S. Winnerl, M. Helm, and T. Dekorsy, “Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna”, Opt. Express 18, 9251-9257 (2010).
  16. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intense terahertz radiation from a microstructured large-area photoconductor”, Appl. Phys. Lett. 86, 121114 (2005).
  17. J. Hebling, G. Almási, I. Z. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large-area THz-pulse generation”, Opt. Express 10, 1161-1166 (2002).
  18. J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse front”, Appl. Phys. B 78, 593- 599 (2004).
  19. J. Hebling, K. –L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities”, J. Opt. Soc. America B 25, B6-B19 (2008).
  20. K. –L. Yeh, J. Hebling, M. C. Hoffmann, and K. A. Nelson, “Generation of high average power 1 kHz shaped THz pulses via optical rectification”, Opt. Communications 281, 3567-3570 (2008).
  21. K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification”, Appl. Phys. Lett. 90, 171121 (2007).
  22. J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification”, Opt. Express 18, 12311- 12327 (2010).
  23. J. A. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification”, Opt. Lett. 37, 557-559 (2012).
  24. M. C. Hoffmann, K. –L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035 nm”, Opt. Express 15, 1170611713 (2007).
  25. F. Blanchard, L. Razzari, H. C. Bandulet, G. Sharma, R. Morandotti, J. C. Kieffer, T. Ozaki, M. Reid, H. F. Tiedje, H. K. Haugen, and F. A. Hegmann, “Generation of 1.5 μJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal”, Opt. Express 15, 13212-13220 (2007).