skip to main content

Analytical Solution in the (I-V) Characteristic Curves Calculation of the Corona Plasma Discharge Using the Capacitance Model

*Asep Yoyo Wardaya  -  Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Semarang, Indonesia
Zaenul Muhlisin  -  Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Semarang, Indonesia
Jatmiko Endro Suseno  -  Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Semarang, Indonesia
Evi Setiawati  -  Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Semarang, Indonesia
Susilo Hadi  -  Department Physique, Université de Rouen Normandie, Avenue De L'universite 76801 St Et. Du Rouvray Cedex, France
Jaka Windarta  -  Department of Electrical Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
Received: 8 Dec 2024; Revised: 23 Jul 2025; Accepted: 30 Jul 2025; Available online: 31 Aug 2025; Published: 31 Aug 2025.

Citation Format:
Abstract
This research aims to calculate thoroughness among data points and analytical simulation curves in discussing corona discharges' (I-V) characteristics. The electrode construction used is the twin towers with dividing angles to the plane (TTDA-P) model in air, with negative DC polarity. An asymmetrical electrical CCP model in the electrode design uses research variations, including active electrode center clamp angles of q = 300, 450, and 600 and active and passive electrode distances (d) of 0.002 m, 0.005 m, and 0.008 m. The simulation curve comes from the analytical formulation of the reduced capacitance type (inserting a multiplying factor k to the sharp corners of the active electrode), with the simulation program being a Python GUI program. The experimental results produced an appropriate error value (t-test value £0.05) and a high percentage of tangent points value. The best curve was achieved at q = 450 and d = 0.008 m, with a t-test value of 0.0313 and the highest percentage of significant tangent points of 92.31%. For all variations q, there is a tendency that the smaller the value of d (the gap length among two electrodes), the greater the deviation distance between the simulation curve and the data points.
Fulltext View|Download
Keywords: Corona Discharge; The Curve of (I-V) Characteristics; TTDA-P; Multiplying Factor K; Python GUI Program

Article Metrics:

  1. S. Kim, and C. Kim, “Applications of Plasma-Activated Liquid in the Medical Field” Biomedic. 9(11), 1700, (2021)
  2. H. D. Stryczewska, and O. Boiko, “Applications of Plasma Produced with Electrical Discharges in Gases for Agriculture and Biomedicine” Appl. Sci., 12(9), 4405, (2022)
  3. A. K. Makar, “An Audit of Occurrence of Dust in Tokamak and Stability of Fusion Plasma” Plasma Fusi. Resear., 15, 1405019.1-1405019.8, (2020)
  4. Y-M. Lim, Y. He, J. Lee, J-H. Kim, K-H. Kim, and C-W. Chung, “Enhanced plasma generation in capacitively coupled plasma using a parallel inductor” Plasma Sour. Sci. Techn., 31(6), (2022)
  5. Y-X. Liu, W. Jiang, X-S. Li, W-Q. Lu, and Y-N. Wang, “An overview of diagnostic methods of low-pressure capacitively coupled plasmas” Thin Solid Films, 521, 141-145, (2012)
  6. Y. Guan, R. S. Vaddi, A. Aliseda, and I. Novosselov, “Analytical model of electrohydrodynamic flow in corona discharge” Phys. Plasmas, 25(8), 083507, (2018)
  7. M. Robinson, “Convective Heat Transfer at The Surface of A Corona Electrode” Int. J. Heat Mass Trans., 13, 263-274, (1970)
  8. M. Robinson, “Movement of Air in the Electric Wind of the Corona Discharge” Trans. Am. Inst. Elect. Eng., 80, 143-150, (1961)
  9. J. R. Bush, P. L. Feldman, and M. Robinson, “High Temperature, High Pressure Electrostatic Precipitation” J. Air Pollu. Contr. Assoc., 29(4), 365-371, (1979)
  10. M. Robinson, “The Corona Threshold for Coaxial Cylinders in Air at High Pressures“ IEEE Trans. Power App. Syst., 86(2), 185-189, (1967)
  11. D. Halliday, R. Resnick, and J. Walker, “Fundamentals of Physics 10th ed.” John Wiley & Sons, (2013)
  12. A. Y. Wardaya, Z. Muhlisin, J. E. Suseno, Q. M. B. Soesanto, M. Azam, E. Setiawati, and S. Hadi, “The electrode model of corona plasma discharge theory for current–voltage characteristics case in air” Euro. Phys. J. Appl. Phys., 97, 22, (2022)
  13. A. Y. Wardaya, Z. Muhlisin, J. E. Suseno, M. Nur, P. Triadyaksa, A. Khumaeni, E. A. Sarwoko, J. Windarta, and S. Hadi, “The Current-Voltage Characteristics for Electrode Geometry Model of Positive DC Corona Discharge in Air” Gazi Uni. J. Sci., 35, 1140-1150, (2022)
  14. J. Dobranszky, A. Bernath, and H. Z. Marton, “Characterisation of the plasma shape of the TIG welding arc” Int. J. Microst. Mater. Proper., 3(1), 126-140, (2008)
  15. E. M. van Veldhuizen, and W. R. Rutgers, “Corona Discharges: Fundamental and Diagnostics” Frontiers in low temperature plasma diagnostics IV: papers. Rolduc Conf. Centre, 40-49, (2001)
  16. Y. Zheng, B. Zhang, and J. He, “Current-voltage characteristics of dc corona discharges in air between coaxial cylinders” Phys. Plasmas, 22, 023501-0235016, (2015)
  17. G. F. L. Ferreira, O. N. Oliveira Jr., and J. A. Giacometti, “Point-to-plane corona: Current-voltage characteristics for positive and negative polarity with evidence of an electronic component” J. Appl. Phys., 59, 3045-3049, (1986)
  18. A. Y. Wardaya, Z. Muhlisin, J. E. Suseno, C. Munajib, S. Hadi, H. Sugito, and J. Windarta, “Capacitance Calculation Model in Corona Discharge Case” Math. Model. Eng. Probl., 9(5), 1161-1171, (2022)
  19. A. D. Moore, “Mastering GUI Programming with Python: Develop impressive cross-platform GUI applications with PyQt” Packt Publishing, (2019)

Last update:

No citation recorded.

Last update:

No citation recorded.