skip to main content

Investigation of Radiation Protection Measures in Extracorporeal Shock Wave Lithotripsy Facilities: A Study Based on NCRP Report 147

*Angelica Margaretha  -  Department of Physics, Matana University, Tangerang, Indonesia
Dwi Adhianto  -  Department of Physics, Matana University, Tangerang, Indonesia
Josua Timotius Manik  -  Departement of Radiology, Dr. Adjidarmo Hospital, Lebak, Indonesia
Received: 24 Apr 2024; Revised: 21 May 2024; Accepted: 22 May 2024; Available online: 31 May 2024; Published: 31 May 2024.

Citation Format:
Abstract

Fluoroscopy, also referred to as the C-Arm, is a direct imaging modality used in interventional radiology. It is commonly used, particularly in Extracorporeal Shockwave Lithotripsy (ESWL) for kidney stone removal. The process of kidney stone destruction typically spans from 45 to 60 minutes. Continuous exposure to the radiation can lead to an accumulation of radiation dosage, potentially causing harmful effects. Radiation shielding is one of the most important factors for radiation protection in obtaining a license to construct a radiation room. Radiation shielding requires a minimum thickness to prevent exposure to radiation from escaping the room and posing a risk to the public. Measurements were conducted within the ESWL facility situated at XYZ private hospital, encompassing both internal and external locations, spanning across a total of 11 designated measurement points. The calculations were performed in accordance with the guidelines stated in NCRP Report No.147. The result obtained were 1.665; 1.681; 1.686; 1.109; and 1.716 mm for lead material thickness and 223.8; 225.9; 226.4; 153.2; and 230.2 mm for concrete material thickness. The hospital walls were constructed using concrete with a thickness of 200 mm and were additionally covered with a 2 mm Pb coating. In conclusion, the lead installed meets NCRP standards, but the thickness of the concrete walls around the room still falls short of the requirements.

Fulltext View|Download
Keywords: medical physics

Article Metrics:

  1. Bhanot, R., & Hameed, Z. B. M. “ALARA in Urology: Steps to Minimize Radiation Exposure During All Parts of the Endourological Journey,” Current Urology Report, 23, 255-259, (2022)
  2. Baralo, B., Samson, P., Hoenig, D., & Smith, A. “Percutaneous kidney stone surgery and radiation exposure: A review,” Asian journal of urology, 7(1), 10-17, (2020)
  3. König, A. M., Etzel, R., Thomas, R. P., & Mahnken, A. H. “Personal radiation protection and corresponding dosimetry in interventional radiology: an overview and future developments,” In RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren, 191(6), 512-521, (2019)
  4. Kaatsch, H. L., Schneider, J., Brockmann, C., Brockmann, M. A., Overhoff, D., Becker, B. V., & Waldeck, S. “Radiation exposure during angiographic interventions in interventional radiology–risk and fate of advanced procedures,” International journal of radiation biology, 98(5), (2022)
  5. Soison, J., & Usawachintachit, M. “Radiation safety and protection in urology,” Insight Urology, 43(2), 140-9, (2022)
  6. Ayu, M. S. K. “Proteksi Radiasi Pada Pasien, Pekerja, dan Lingkungan di Dalam Instalasi Radiologi,” Inst. Ilmu Kesehat. Str. Indones., (2020)
  7. Manik, J. W., & Hakim, L. “Analysis of Radiation Barrier Design in Peat Soil Using NCRP Method No. 147 at Murjani Regional Hospital,” Journal of Social Research, 2(10), 3742-3749, (2023)
  8. National Council on radiation Protection and Measurement. “NCRP Report No.147: Structural Shielding Design for Medical X-ray Imaging Facilities,” Maryland: NCRP, (2004)
  9. Kim, C. G. “Measurement and Analysis of Environmental Radiation in The Extracorporeal Shock Wave Lithotripsy Laboratory,” Journal of Survey in Fisheries Sciences, 10(4S), 462-471, (2023)
  10. International Atomic Energy Agency. “Radiation Protection and Safety in Medical Uses of Ionizing Radiation,” International Atomic Energy Agency, (2016)
  11. Fitriani, E., & Wibowo, G. M. “Pengukuran Laju Paparan Radiasi Pada Ruang Pemeriksaan Msct 64 Slice,” JRI (Jurnal Radiografer Indonesia), 1(2), 85-89, (2018)
  12. BAPETEN. “Peraturan Kepala Badan Nuklir Nomor 8 Tahun 2011 tentang Keselamatan Radiasi dalam Penggunaan Pesawat Sinar-x Radiologi Diagnostik dan Intervensional. Jakarta,” (2011)
  13. BAPETEN. Peraturan Kepala Badan Pengawas Tenaga Nuklir Nomor 4 Tahun 2013 Tentang Proteksi Radiasi Dan Keselamatan Radiasi Dalam Pemanfaatan Tenaga Nuklir. Jakarta, (2013)
  14. Simanjuntak Josepa, Martua Damanik, & Elvita Rahmi Daulay. “Analisis penahan radiasi ruangan radiologi intervensi cathlab sebagai upaya proteksi keselamatan radiasi di RSUP H. Adam Malik Medan,” Prosiding Seminar Si-INTAN, Vol 2, No. 1, pp 28-38, (2022)
  15. Dian, F., Poedjomartono, B., & Trikasjono, T. “Analisis Keselamatan Radiasi Tindakan Radiologi Intervensional dan Kateterisasi Jantung Vaskular di Cath-Lab Room RSUP Dr. Sardjito,” J Radiol Indones, 1(1), 10-22, (2015)
  16. Savitri, Leily & Wawan Susanto. “Pengawasan Paparan Pekerja di Fasilitas Radiologi Intervensional,” (Seminar Keselamatan Nuklir 2014 Makalah Penyaji Oral. Bidang Fasilitas Radiasi dan Zat Radioaktif), (2014)
  17. Dari, D. W., Wulandari, P. I., & Kusman, K. “Evaluasi Implementasi Proteksi Radiasi Di Ruang Radiologi Intervensi Instalasi Rir Rsup Prof. Dr. Igng Ngoerah,” Humantech: Jurnal Ilmiah Multidisiplin Indonesia, 2(3), 604-619, (2023)

Last update:

No citation recorded.

Last update:

No citation recorded.