skip to main content

The Mass Distribution of Soputan Volcano Based on Gravity Data

Dave Emmanuel Haning  -  Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Semarang, Indonesia
Agus Setyawan  -  Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Semarang, Indonesia
*Rina Dwi Indriana orcid scopus  -  Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Semarang, Indonesia

Citation Format:
Abstract

The gravity method is a passive method based on the density measurement among sediment. This method is usually applied to identify the condition of the earth’s subsurface. Soputan Volcano is located in District Minahasa Tenggara. Soputan Volcano is included in type A Volcano or stratovolcano and it stands at 1783.7 MSL. This research aims to identify the distribution of subsurface mass (sediment density) of Soputan. The data used was Data from satellite GGmPlus and elevation data of ERTM which was corrected to ellipsoid reference. 3D inversion modeling applied Grablox software. The complete value of the Bouguer anomaly obtained was 110 – 162 mGal. The density result obtained from the inversion model was 2.3 g/cm3 to 2.95 g/cm3. The sediment that could be identified was andesite sediment and basalt sediment. Based on that result, the layer arranging Soputan Volcano consists of many variations of mass in each depth grouped into andesite, breccia, basalt, andesite-basaltic, lava, breccia, and tuff.

Fulltext View|Download

Article Metrics:

  1. Gosal, L. C., Tarore, R. C., and Karongkong, H.H, “Analisis Spasial Tingkat Kerentanan Bencana Gunung Api Lokon di Kota Tomohon,” Jurnal Spasial, 5, 2, (2018)
  2. Dawid, S., Ferdy, Pasau, and Guntur, "Penentuan Lokasi Pergerakan Magma Gunung Api Soputan Berdasarkan Studi Sebaran Hiposenter Gempa Vulkanik Periode Mei 2013 – Mei 2014," Jurnal Ilmiah Sains, (2015)
  3. Tinaiy, A. M., Rogi, O. H. A., and Siregar, F.O.P., "Pemetaan Kerentanan terhadap Bahaya Bencana Vulkanik Gunung Soputan Kabupaten Minahasa Tenggara," Jurnal Spasial, 7, 1, (2020)
  4. Bunga, I. G. K. S. and Nugraha, M.F., ”Preliminary Result of the Influence of Earthquake Stress Change and the Implication for Soputan Volcano and Lokon Volcano,” IOP Conf. Ser. Earth Environ. Sci., 62, 1, 1-7, (2017)
  5. Agus S., Supriyadi, Nurul P., and Bowo E. C., "Correlation Between GGMPlus, Topex and BGI Gravity Data in Volcanic Areas of Java Island," J. Phys.: Conf. Ser., 1825, 012023, (2021)
  6. Dwi E. D. and Ari S., "Pemodelan Struktur Bawah Permukaan Gunung api Lokon Menggunakan Pemodelan Inversi 3d Berdasarkan Data Gravitasi Ggmplus," Tesis, UGM, (2020)
  7. Indriana, R., Irham, M.N, and Widada, S., ”Re-Modelling Kaligarang Fault base on satelit gravity data,” Journal of Physics: Conference Series, ISNPINSA 2020, 1943012004, (2021)
  8. . A. Setyawan, L. M. Khusna, J. E. Suseno, D. I. Rina, T. Yulianto, Y. Aribowo, “Detecting hot spring manifestations based on gravity data satellite on mountain LawuJ,” Phys.: Conf. Ser., 1943, 012034, (2021)
  9. Indriana, R., Irham, M. N, and Sabri, L. A., “Data validation og gravity field and sattelite data using correlation and coherence method,” J. Phys. and its apl., 3, 1, 113-119, (2020)
  10. Hirt, C., Kuhn, M., Claessens, S., Pail, R., Seitz, K., and Gruber, T., "Study of the Earth’s short-scale gravity field using the ERTM 2160 gravity model," J. Computers & Geosciences, 73, 71-80, (2014)
  11. Effendi, A. C., and Bawono, S. S., "Peta Geologi Lembar Manado Sulawesi Utara," Edisi Kedua, Pusat Penelitian dan Pengembangan Geologi, Bandung, (1997)
  12. Blakely, R. J, "Potential Theory in Gravity and Magnetic Applications," 2-nd Ed., Cambridge University Press, Cambridge, (1996)
  13. Grandis, H., Pemodelan Inversi Geofisika, Edisi Pertama, Himpunan Ahli Geofisika Indonesia, Jakarta, (2009)
  14. Supriyanto, "Analisis Data Geofisika: Memahami Teori Inversi", Departemen FMIPA Universitas Indonesia, Depok, (2007)
  15. Constable, S. C., Parker, R. L., and Constable, C. G., Occam's Inversion: A Practical Algorithm for Generating Smooth Model from Electromagnetic Sounding Data, Geophysics Journal, 52, 3, 289-300, (1987)
  16. Hjelt, S. E., Pragmatic Inversion of Geophysical Data, Spriner Verlag, Jerman, (1992)
  17. Pirttijarvi, M., "Grablox, Gravity interpretation and modeling software based on a 3- D Block Model, User‟s Guide," University of Oulu, (2008)
  18. Camacho, A. G., Prieto, J. F., Ancochea, E., and Fernandez, J., ”Deep Volcanic Morphology Below Lanzarote, Canaries, From Gravity Inversion: New Results for Timanfaya and Implications,” J. of Volcano. and Geotherm. Res., 369, 64-79, (2019)
  19. Hightower E., Gurnis M., Van A. H., "A Bayesian 3-D linear gravity inversion for complex density distributions: application to the Puysegur subduction system," Geophys. J. Int., 223, 3, 1899–918, (2020)
  20. Maimuna and Afra K., "Analisis Anomali Gaya Berat menggunakan Metode SVD dan Pemodelan 3D (Studi Kasus Gempa di Kepulauan Togean, Kabupaten Tojo Una-Una, Sulawesi Tengah)" Jurnal Geofisika, 19, 1, 17-23, (2021)
  21. Rina D. I. and Irham M. N., “Merapi observed gravity anomaly changes in 2019,” J. Phys., Conf. Ser., ISNPINSA 2019, 1524012006, (2020)
  22. Codd, A. L., Gross, L., Aitken, A., "Fast Multi-Resolution 3D Inversion of Potential Fields With Application to High-Resolution Gravity and Magnetic Anomaly Data From The Eastern Goldfields in Western Australia," Comput. Geosci., 157, 1–3, (2021)
  23. Zurek, J. and Williams‐Jones, G., "The Shallow Structure of Kīlauea Caldera from High‐resolution Bouguer gravity and Total Magnetic Anomaly Mapping: Insights into Progressive Magma Reservoir Growth," J. Geophys. Res. Sol. Earth, 118, 7, 3742-3752, (2013)
  24. Oh, C. W., Choi, S. C., Lee, D. S., Kim, M. D., Park, J. H., and Seo, M. H., “A Preliminary Study on the Correlation between GRACE Satellite Geoid Data Variation and Volcanic Magma Activity,” J. Korean Earth Sci. Soc., 34, 6, 550−560, (2013)

Last update:

No citation recorded.

Last update:

No citation recorded.