skip to main content

Effect of Yield Silver Nanoparticles in Enhancing Raman Signal of SERS Substrate Fabricated on Whatman Filter Paper

*Affi Nur Hidayah orcid scopus  -  Department of Physics, Universitas Indonesia, Depok, Indonesia
Yuliati Herbani  -  Research Center for Photonics-National Research and Innovation Agency, Banten, Indonesia
Djoko Triyono  -  Research Center for Photonics-National Research and Innovation Agency, Banten, Indonesia
Rosari Saleh  -  Research Center for Photonics-National Research and Innovation Agency, Banten, Indonesia
Received: 22 Dec 2022; Revised: 22 Apr 2022; Accepted: 24 Apr 2022; Available online: 27 May 2022; Published: 28 May 2022.

Citation Format:
Abstract

On Whatman Filter Paper, Surface Enhanced Raman Scattering (SERS) Substrate was created from colloidal silver nanoparticles by drop casting in varied volume colloidal nanoparticles of 3 ml and 6 ml. Using Raman Spectroscopy, SERS substrates were investigated for their ability to enhance 500 ppm of Deltamethrin pesticides Raman Signal. The number of colloidal nanoparticles is related to the volume of colloidal nanoparticles, indicating that high yields nanoparticle synthesis. The results demonstrate that fabricating SERS substrates in 6 ml increased Raman signal more than fabricating nanoparticles in 3 ml.

Fulltext View|Download
Keywords: Radiation Physics; Materials

Article Metrics:

  1. M. Fan, G. F. S. Andrade, and A. G. Brolo, “A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry,” Anal. Chim. Acta., 1097, 1-29, (2020)
  2. S. B. Jaber, W. J. Peveler, R. Q. Cabrera, E. Cortés, C. S. Vazquez, N. A. Karim, S. A. Maier, and I. P. Parkin, ‘’Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules,‘’ Nat. Commun., 7, 12189, (2016)
  3. M. L. Mekonnen, W. N. Su, C. H. Chenb, and B. J. Hwang, ‘’Ag@SiO2 nanocube loaded miniaturized filter paper as a hybrid flexible plasmonic SERS substrate for trace melamine detection,” Anal. Methods, 9, 6823–6829, (2017)
  4. K. Yuan, J. Zheng, D. Yang, B. J. Sánchez, X. Liu, X. Guo, C. Liu, N. E. Dina, J. Jian, Z. Bao, Z. Hu, Z. Liang, H. Zhou, and Z. Jiang, ‘’Self-Assembly of Au@Ag Nanoparticles on Mussel Shell To Form Large-Scale 3D Supercrystals as Natural SERS Substrates for the Detection of Pathogenic Bacteria,” ACS Omega, 3, 2855−2864, (2018)
  5. U. K. Sur and J. Chowdhury, “Surface-enhanced Raman scattering: overview of a versatile technique used in electrochemistry and nanoscience,” Curr. Sci., 105, 923–939, (2013)
  6. U. K. Sur., “Surface-enhanced Raman scattering (SERS) spectroscopy: a versatile spectroscopic and analytical technique used in nanoscience and nanotechnology,” Adv. Nano. Res., 1, 111–124, (2013)
  7. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev., 108, 494–521, (2008)
  8. K. A. Willets and R. P. V. Duyne RPV, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem., 58, 267–97, (2007)
  9. M. Kahraman, E. R. Mullen, A. Korkmaz, and S. W. Hogiu, “Fundamentals and applications of SERS-based bioanalytical sensing,” Nanophotonics, 6, 5, 831-852, (2017)
  10. G. Y. Yao, Q. L Liu, and Z. Y. Zhao, “Studied Localized Surface Plasmon Resonance Effects of Au Nanoparticles on TiO2 by FDT Simulations,“ Catalysts, 8, 236, (2018)
  11. J. Jana, M. Ganguly, and T. Pal, RSC Adv., 6, 86174–86211, (2016)
  12. A. N. Hidayah, Kapabihi, D. Triyono, and Y. Herbani, “Molar Concentration of Silver Nanoparticles on Performance Effect of Surface-Enhanced Raman Scattering (SERS) Glass Substrate Fabricated by Drop-Casting Method,” Proceedings of the 4th International Seminar on Metallurgy and Materials (ISMM2020), AIP Conf. Proc., 2382, 020005-1–020005-5, (2021)
  13. U. K. Sur, ‘’Surface-enhanced Raman spectroscopy: recent advancement of Raman spectroscopy,“ Resonance, 15, 154–164, (2010)
  14. S. S. B. Moram, C. Byram, S. N. Shibu, B. M.Chilukamarri, and V. R. Soma, “Ag/Au Nanoparticle-Loaded Paper-Based Versatile Surface-Enhanced Raman Spectroscopy Substrates for Multiple Explosives Detection,” ACS Omega, 3, 8190−8201, (2018)
  15. Y. Meng, Y. Lai, X. Jiang, Q. Zhao, J. Zhan, ”Silver nanoparticles decorated filter paper via self-sacrificing reduction for membrane extraction surface-enhanced Raman spectroscopy detection,” Analyst, 138, 2090–2095, (2013). doi: 10.1039/c3an36485b
  16. J. Shang and X. Gao, “Nanoparticle Counting: Towards Accurate Determination of the Molar Concentration,“ Chem. Soc. Rev. 43, 21, 7267–7278, (2014)
  17. A. N. Hidayah and Y. Herbani, “Tuning Localized Surface Plasmon Resonance (LSPR) of Au-Ag Nanoalloys by Femtosecond Laser, “IOP Conf. Series: J. Phys.: Conf. Ser., 1436, 012107, (2020)
  18. E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C111, 13794-13803, (2007)
  19. K. Kneipp and H. Kneipp, “Single molecule Raman scattering,” Appl. Spectrosc., 60, 12, 322A–334A, (2006)
  20. R. Pilot, R. Signorini, C. Durante, L. Orian, M. Bhamidipati, and Laura Fabris, “A Review on Surface-Enhanced Raman Scattering,” Biosensors, 9, 57, (2019)

Last update:

No citation recorded.

Last update:

No citation recorded.