skip to main content

Review Article: Technology Reverse Electrodialysis Membrane

*Assalaam Umar Abdurahman  -  Department of Chemical Engineering, Universitas Diponegoro, Indonesia
Open Access Copyright 2021 Journal of Membranes and Materials under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

The level of world energy consumption is increasing continuously, so that environmental impacts such as CO2 emissions are increasing. The renewable energy source that has great potential in the world is the Salinity Gradient Power, which utilizes energy from mixing sea water and river water. Reverse Electrodialysis is one of the most promising methods to capture salinity gradient power to solve energy demands in the future due to being environmentally-friendly in producing no emission pollutant gases and producing a high density of energy, which generates power via the transport of the positive and negative ions in the water through selective ion-exchange membranes.Ion-exchange membranes are used in environmental and energy technologies of electrodialysis desalination and reverse electrodialysis power generation, respectively. Recent studies reported empirical evidence that the conductivity and permselectivity of IEMs are bound by a tradeoff relationship, where an increase in ionic conductivity is accompanied by a decrease in counterion selectivity over co-ion. The analysis revealed the mechanism for the tradeoff induced by bulk solution concentration: a higher salinity suppresses IEM charge-exclusion, thus lowering permselectivity, but elevates mobile ion concentration within the membrane matrix to improve conductivity. As such, IEM applications are practically confined to sub-seawater salinities, i.e., RED using hypersaline streams will not be efficient. In another tradeoff driven by IEM water sorption, increasing membrane swelling enhances effective on diffusivity to raise conductivity, but diminishes permselectivity due to dilution of fixed charges.

Fulltext View|Download
Keywords: CO2, IEM, reverse electrodialysis, salinity
  1. H. Strathmann, Ion-exchange membrane separation processes, Elsevier, 2004
  2. H. Strathmann, Electrodialysis, a mature technology with a multitude of new applications, Desalination, 264 (2010) 268-288
  3. S. Bose, T. Kuila, T.X.H. Nguyen, N.H. Kim, K.-t. Lau, J.H. Lee, Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges, Progress in Polymer Science, 36 (2011) 813-843
  4. G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review, J Membrane Sci, 377 (2011) 1-35
  5. P. Długołęcki, K. Nymeijer, S. Metz, M. Wessling, Current status of ion exchange membranes for power generation from salinity gradients, J Membrane Sci, 319 (2008) 214-222
  6. H. Strathmann, A. Grabowski, G. Eigenberger, Ion-exchange membranes in the chemical process industry, Industrial & Engineering Chemistry Research, 52 (2013) 10364-10379
  7. T.W. Xu, C.H. Huang, Electrodialysis-Based Separation Technologies: A Critical Review, Aiche J, 54 (2008) 3147-3159
  8. J.W. Post, H.V. Hamelers, C.J. Buisman, Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system, Environ Sci Technol, 42 (2008) 5785-5790
  9. N.Y. Yip, D. Brogioli, H.V.M. Hamelers, K. Nijmeijer, Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects, Environ Sci Technol, 50 (2016) 12072-12094
  10. H.B. Park, J. Kamcev, L.M. Robeson, M. Elimelech, B.D. Freeman, Maximizing the right stuff: The trade-off between membrane permeability and selectivity, Science, 356 (2017)
  11. B.D. Freeman, Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes, Macromolecules, 32 (1999) 375-380
  12. G.M. Geise, H.B. Park, A.C. Sagle, B.D. Freeman, J.E. McGrath, Water permeability and water/salt selectivity tradeoff in polymers for desalination, J Membrane Sci, 369 (2011) 130-138
  13. A. Mehta, A.L. Zydney, Permeability and selectivity analysis for ultrafiltration membranes, J Membrane Sci, 249 (2005) 245-249
  14. N.Y. Yip, M. Elimelech, Performance Limiting Effects in Power Generation from Salinity Gradients by Pressure Retarded Osmosis, Environ Sci Technol, 45 (2011) 10273-10282
  15. G.M. Geise, M.A. Hickner, B.E. Logan, Ionic resistance and permselectivity tradeoffs in anion exchange membranes, Acs Appl Mater Inter, 5 (2013) 10294-10301
  16. E. Guler, R. Elizen, D.A. Vermaas, M. Saakes, K. Nijmeijer, Performance-determining membrane properties in reverse electrodialysis, J Membrane Sci, 446 (2013) 266-276
  17. N.Y. Yip, D.A. Vermaas, K. Nijmeijer, M. Elimelech, Thermodynamic, Energy Efficiency, and Power Density Analysis of Reverse Electrodialysis Power Generation with Natural Salinity
  18. Gradients, Environ Sci Technol, 48 (2014) 4925-4936
  19. A.H. Galama, D.A. Vermaas, J. Veerman, M. Saakes, H.H.M. Rijnaarts, J.W. Post, K. Nijmeijer, Membrane resistance: The effect of salinity gradients over a cation exchange membrane, J Membrane Sci, 467 (2014) 279-291
  20. N. Berezina, N. Kononenko, O. Dyomina, N. Gnusin, Characterization of ion-exchange membrane materials: properties vs structure, Advances in Colloid and Interface Science, 139 (2008) 3-28
  21. J. Kamcev, R. Sujanani, E.S. Jang, N. Yan, N. Moe, D.R. Paul, B.D. Freeman, Salt concentration dependence of ionic conductivity in ion exchange membranes, J Membrane Sci, 547 (2018) 123-133
  22. B.P. Zhang, J.G. Hong, S.H. Xie, S.M. Xia, Y.S. Chen, An integrative modeling and experimental study on the ionic resistance of ion-exchange membranes, J Membrane Sci, 524 (2017) 362-369
  23. J. Kamcev, D.R. Paul, G.S. Manning, B.D. Freeman, Ion Diffusion Coefficients in Ion Exchange Membranes: Significance of Counterion Condensation, Macromolecules, 51 (2018) 5519-5529
  24. L.M. Robeson, H.H. Hwu, J.E. McGrath, Upper bound relationship for proton exchange membranes: Empirical relationship and relevance of phase separated blends, J Membrane Sci, 302 (2007) 70-77
  25. K. Kontturi, L. Murtomäki, J.A. Manzanares, Ionic Transport Processes: In Electrochemistry and Membrane Science, Oxford University Press, 2008
  26. A. Campione, L. Gurreri, M. Ciofalo, G. Micale, A. Tamburini, A. Cipollina, Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications, Desalination, (2018)
  27. M. Tedesco, H.V.M. Hamelers, P.M. Biesheuvel, Nernst-Planck transport theory for (reverse) electrodialysis: I. Effect of co-ion transport through the membranes, J Membrane Sci, 510 (2016) 370-381
  28. A. Moya, A Nernst-Planck analysis on the contributions of the ionic transport in permeable ion-exchange membranes to the open circuit voltage and the membrane resistance in reverse electrodialysis stacks, Electrochimica Acta, 238 (2017) 134-141
  29. J. Kamcev, M. Galizia, F.M. Benedetti, E.S. Jang, D.R. Paul, B.D. Freeman, G.S. Manning,
  30. Partitioning of mobile ions between ion exchange polymers and aqueous salt solutions: importance of counter-ion condensation, Phys Chem Chem Phys, 18 (2016) 6021-6031
  31. J. Kamcev, D.R. Paul, G.S. Manning, B.D. Freeman, Predicting Salt Permeability Coefficients in Highly Swollen, Highly Charged Ion Exchange Membranes, Acs Appl Mater Inter, 9 (2017) 4044-4056
  32. T. Xu, Ion exchange membranes: state of their development and perspective, J Membrane Sci, 263 (2005) 1-29
  33. T. Sata, Ion exchange membranes: preparation, characterization, modification and application, Royal Society of chemistry, 2007
  34. J.G. Hong, B.P. Zhang, S. Glabman, N. Uzal, X.M. Dou, H.G. Zhang, X.Z. Wei, Y.S. Chen, Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: A review, J Membrane Sci, 486 (2015) 71-88
  35. J. Ran, L. Wu, Y.B. He, Z.J. Yang, Y.M. Wang, C.X. Jiang, L. Ge, E. Bakangura, T.W. Xu,
  36. Ion exchange membranes: New developments and applications, J Membrane Sci, 522 (2017) 267-291
  37. M. Turek, B. Bandura, Renewable energy by reverse electrodialysis, Desalination, 205 (2007) 67-74
  38. A.J. Bard, L.R. Faulkner, J. Leddy, C.G. Zoski, Electrochemical methods: fundamentals and
  39. applications, wiley New York, 1980
  40. H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, Wiley, 1985
  41. F.G. Donnan, Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht dialysierenden Elektrolyten. Ein Beitrag zur physikalisch‐chemischen Physiologie, Berichte der Bunsengesellschaft für physikalische Chemie, 17 (1911) 572-581
  42. A. Galama, J. Post, H. Hamelers, V. Nikonenko, P. Biesheuvel, On the origin of the membrane potential arising across densely charged ion exchange membranes: How well does the Teorell-Meyer-Sievers theory work?, Journal of Membrane Science and Research, 2 (2016) 128- 140
  43. G.S. Manning, Limiting laws and counterion condensation in polyelectrolyte solutions II. Self‐diffusion of the small ions, The Journal of Chemical Physics, 51 (1969) 934-938
  44. J. Kamcev, D.R. Paul, B.D. Freeman, Effect of fixed charge group concentration on equilibrium ion sorption in ion exchange membranes, Journal of Materials Chemistry A, 5 (2017) 4638-4650
  45. R.A. Robinson, R.H. Stokes, Electrolyte Solutions ... Second edition, Butterworths Scientific Publications, London, 1959
  46. K.S. Pitzer, Thermodynamics of electrolytes. I. Theoretical basis and general equations, The Journal of Physical Chemistry, 77 (1973) 268-277
  47. K.S. Pitzer, G. Mayorga, Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent, The Journal of Physical Chemistry, 77 (1973) 2300-2308
  48. F.G. Helfferich, Ion exchange, Courier Corporation, 1962
  49. J.S. Mackie, P. Meares, The Diffusion of Electrolytes in a Cation-Exchange Resin Membrane .1. Theoretical, Proc R Soc Lon Ser-A, 232 (1955) 498-509
  50. J.S. Mackie, P. Meares, The Diffusion of Electrolytes in a Cation-Exchange Resin Membrane .2. Experimental, Proc R Soc Lon Ser-A, 232 (1955) 510-518
  51. J.G. Wijmans, R.W. Baker, The solution-diffusion model: a review, J Membrane Sci, 107 (1995) 1-21
  52. D.R. Paul, Reformulation of the solution-diffusion theory of reverse osmosis, J Membrane Sci, 241 (2004) 371-386
  53. N. Rosenberg, C. Tirrell, Limiting currents in membrane cells, Industrial & Engineering Chemistry, 49 (1957) 780-784
  54. R. B.V, Dutch king officially opens Blue Energy pilot installation on the Afsluitdijk, http://www.redstack.nl/en/news/83/dutch-king-officially-opens-blue-energypilot-installation-on-the-afsluitdijk (November, 2014)
  55. Arsalan, M., Khan, M.M.A. & Rafiuddin. (2013). A comparative study of theoretical, electrochemical and ionic transport through PVC based Cu3(PO4)2 and polystyrene supported Ni3(PO4)2 composite ion exchange porous membranes. Desalination. 318, 97–106
  56. Arifin, D. E. S., & Zainuri, M. (2014). Karakterisasi Sifat Separator Komposit PVDF / Poli (Dimetilsiloksan) dengan Metode Pencampuran Membran (Blending Membrane). Jurnal Sains & Seni Pomits, Vol. 3 No. 2, 2337-3520

Last update:

No citation recorded.

Last update:

No citation recorded.