skip to main content

SOLVING THE 106 YEARS OLD 3^k POINTS PROBLEM WITH THE CLOCKWISE-ALGORITHM

*Marco Ripà  -  sPIqr Society, World Intelligence Network, Italy

Citation Format:
Abstract
In this paper, we present the clockwise-algorithm that solves the extension in 𝑘-dimensions of the infamous nine-dot problem, the well known two-dimensional thinking outside the box puzzle. We describe a general strategy that constructively produces minimum length covering trails, for any 𝑘 ∈ N−{0}, solving the NP-complete (3×3×⋯×3)-points problem inside a 3×3×⋯×3 hypercube. In particular, using our algorithm, we explicitly draw different covering trails of minimal length h(𝑘) = (3^𝑘 − 1)/2, for 𝑘 = 3, 4, 5. Furthermore, we conjecture that, for every 𝑘 ≥ 1, it is possible to solve the 3^𝑘-points problem with h(𝑘) lines starting from any of the 3^𝑘 nodes, except from the central one. Finally, we cover 3×3×3 points with a tree of size 12.
Fulltext View|Download
Keywords: Nine dot-Problem; Optimization; Thinking outside the box, Polygonal path; Clockwise-algorithm.

Article Metrics:

  1. M. Kihn, “Outside the Box: The Inside Story”, FastCompany, 1995
  2. S. Loyd, “Cyclopedia of Puzzles”, The Lamb Publishing Company, p. 301, 1914
  3. J. M. Chein, R. W. Weisberg, N. L. Streeter and S. Kwok, “Working memory and insight in the nine-dot problem”, Memory & Cognition, vol. 38, pp. 883–892, 2010
  4. C. T. Lung and R. L. Dominowski, “Effects of strategy instructions and practice on nine-dot problem solving”, Journal of Experimental Psychology: Learning, Memory, and Cognition, vol. 11, no. 4, pp. 804–811, 1985
  5. S. Bereg, P. Bose, A. Dumitrescu, F. Hurtado and P. Valtr, “Traversing a set of points with a minimum number of turns”, Discrete & Computational Geometry, vol. 41, no. 4, pp. 513–532, 2009
  6. M. J. Collins, “Covering a set of points with a minimum number of turns”, International Journal of Computational Geometry & Applications, vol. 14, no. 1-2, pp. 105–114, 2004
  7. E. Kranakis, D. Krizanc and L. Meertens, “Link length of rectilinear Hamiltonian tours in grids”, Ars Combinatoria, vol. 38, pp. 177–192, 1994
  8. M. Ripà and P. Remirez, “The Nine Dots Puzzle extended to n X n X ... X n Points, viXra, 5 Sep. 2013. https://vixra.org/pdf/1307.0021v4.pdf
  9. A. Aggarwal, D. Coppersmith, S. Khanna, R. Motwani and B. Schieber, “The angular-metric traveling salesman problem”, SIAM Journal on Computing, vol. 29, pp. 697–711, 1999
  10. C. Stein and D. P. Wagner, “Approximation algorithms for the minimum bends traveling salesman problem. In: K. Aardal, & B. Gerards (Eds.), Integer Programming and Combinatorial Optimization, LNCS, vol. 2081, pp. 406–421. Berlin: Springer, 2001
  11. B. Chitturi and J. Pai, “Minimum-Link Rectilinear Covering Tour is NP-hard in R^4”, arXiv, 1 Oct. 2018. https://arxiv.org/abs/1810.00529
  12. M. J. Collins and M. E. Moret, “Improved lower bounds for the link length of rectilinear spanning paths in grids”, Information Processing Letters, vol. 68, no. 6, pp. 317–319, 1998
  13. M. Ripà, “Solving the n_1 ≤ n_2 ≤ n_3 Points Problem for n_3 < 6, ResearchGate, 25 Jun. 2020. https://www.researchgate.net/publication/
  14. _Solving_the_n_1_n_2_n_3_Points_Problem_for_n_3_6
  15. B. Keszegh, “Covering Paths and Trees for Planar Grids”, arXiv, 3 Nov. 2013. https://arxiv.org/abs/1311.0452
  16. A. Dumitrescu and C. Tóth, “Covering Grids by Trees”, 26th Canadian Conference on Computational Geometry, 2014
  17. M. Hohenwarter, M. Borcherds, G. Ancsin, B. Bencze, M. Blossier, J. Elias, K. Frank, L. Gal, A. Hofstaetter, F. Jordan, B. Karacsony, Z. Konecny, Z. Kovacs, W. Kuellinger, E. Lettner, S. Lizelfelner, B. Parisse, C. Solyom-Gecse and M. Tomaschko, “GeoGebra - Dynamic Mathematics for Everyone - version 6.0.507.0-w”, International GeoGebra Institute, 16 Oct. 2018. https://www.geogebra.org

Last update:

No citation recorded.

Last update:

No citation recorded.