skip to main content

ELEMEN SIMETRIS DAN SIMETRIS DIPERUMUM PADA RING DENGAN INVOLUSI

*Titi Udjiani SRRM  -  Departemen Matematika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia

Citation Format:
Abstract

The definition of symmetric element in a ring with unity and equipped with involution can be generalized to generalized symmetric elements. But the properties of symmetric element not automatically can be generalized to generalized symmetric elements. In this paper, we discuss the property of symmetric element which can or cannot be generalized to generalized symmetric elements. Because of at least there is an element of symmetric and generalized symmetric elements which   have the generalized Moore Penrose inverse, so method in this paper is by establishing a relationship between symmetric element, generalized symmetric element and generalized Moore Penrose inverse of element.

Fulltext View|Download

Article Metrics:

  1. D. Mosic dan D.S.Djordjevic, “Moore Penrose Invertible Normal and Hermitian Elements in Ring ”, Linear Algebra Appl, vol. 431, pp. 732-745, 2009
  2. D. Mosic dan D.S.Djordjevic, “ Partial Isometries and EP Elements in Rings with Involution ”, A publication of the International Linear Algebra Society, vol. 18, pp. 761-772, 2009
  3. Koliha J.J., et al, “ ”, . Linear Algebra Appl., vol. 426, pp. 371-381, 2007
  4. T.Udjiani, B.Surodjo and S.Wahyuni , “Generalized Moore Penrose Inverse in Rings with Involution”, Far East Journal of Mathematical Sciences , vol. 92, pp. 29-40, 2014
  5. T.Udjiani, Kartono Suryoto R.Heri dan Priyo.S, “Generalized Moore Penrose invers of symmetric elements in rings with an Involution.”, Far East Journal of Mathematical Sciences , vol.102, no. 8, pp. 1635-1646, 2017
  6. T. Udjiani, Harjito, Suryoto dan Nikken Prima, “ Generalized Moore Penrose Inverse of Normal Elements in a Ring with Involution ”, IOP Conf. Series: Materials Science and Engineering , no. 300 012074, 2018
  7. T Udjiani, S.Zaki, Suryoto dan Harjito , “Normal Elements On The Generalized Moore Penrose Inverse”, IOP Conf. Series: Materials Science and Engineering, no. 1217 012067, 2019

Last update:

No citation recorded.

Last update:

No citation recorded.