METODE MULTIPLE IMPUTATION UNTUK MENGATASI KOVARIAT TAK LENGKAP PADA DATA KEJADIAN BERULANG

Rianti Siswi Utami, Danardono Danardono


DOI: https://doi.org/10.14710/jfma.v2i2.36

Abstract


Multiple imputation is one of estimation method used to impute missing observations. This method imputes missing observation several times then it is more possible to get the right estimate than just one time imputation. In this research, the method will be applied to estimate missing observations in covariates of recurrent event data. Some multiple imputation methods will be considered including combination of the event indicator, the event  times,   the logarithm of event times, and the cumulative baseline hazard. To compare these methods, Monte Carlo simulation will be used based on relative bias and Mean Squared Error (MSE). The recurrent events will be modelled using Cox proportional hazard model. Furthermore, real data application will be presented.


Full Text:

PDF

References


Z. Huo, A Comparison of Multiple Imputation Methods for Missing Covariate Values in Recurrent Event Data, Tesis, Uppsala University, 2015.

D.B. Rubin, Multiple Imputation for Nonresponse in Surveys, John Wiley & Sons, Inc, New York, 1987.

Y.C. Yuan, Multiple Imputation for Missing Data: Concepts and New Development, Artikel, SAS Institute Inc., Rocville, MD, 2005.

K.G. Moons, R.A. Donders, T. Stijnen, dan F.E. Harrel, Using the Outcome for Imputation of Missing Predictor Values was Preferred, Journal of Clinical

Epidemiology, vol. 59, no. 10, pp. 1092-1101, 2006.

I.R. White, dan P. Royston, Imputing Missing CovariateValues for The Cox Model, Statistics in Medicine, vol. 28, no. 15, pp. 1982-1998, 2009.

R.L. Prentice, B.J. Williams, dan A.V. Peterson, On the Regression Analysis of Multivariate Failure Time Data, Biometrika, vol. 68, pp. 373—379, 1981.

L.J. Wei, D.Y. Lin, dan L. Weissfeld, Regression Analysis of Multivariate Incomplete Failure Time Data by Modeling Marginal Distribution, Journal of the American Statistical Association, vol. 84, pp. 1065—1073, 1989.

X. Liu, Survival Analysis: Models and Applications, John Wiley & Sons, Inc, New York, 2012.

R.J.A. Little dan D.B. Rubin, Statistical Analysis with Missing Data, edisi 2, Wiley: Hoboken, N.J., 2002.

J.P. Klein dan M.L. Moeschberger, Survival Analysis Techniques for Censored and Truncated Data, edisi 2, Springer-Verlag, New York, 2003.

H.J. Lim dan X. Zhang, Additive and Multiplicative Hazards Modeling for Recurrent Event Data Analysis, BMC Medical Research Methodology, vol. 11, pp. 101 - 121, 2011.

Z.A. Baso dan J. Raharjo, Kesehatan Reproduksi, Panduan Bagi Perempuan, Pustaka Pelajar, Yogyakarta, 1999.

T. Suwarni, Faktor Determinan yang Mempengaruhi Siklus Menstruasi, Indonesian Journal On Medical Science, vol. 2, no. 1, pp. 33 - 38, 2015.


Refbacks

  • There are currently no refbacks.


Publisher:

Department of Mathematics, Faculty of Science and Mathematics, Diponegoro University

Mailing address: Jl. Prof Soedarto, SH, Tembalang, Semarang, Indonesia 50275

Telp./Fax             : (+6224) 70789493 / (+62224) 76480922

Website              : www.math.fsm.undip.ac.id

E-mail                : admin.math@live.undip.ac.id

 

Indexed in:

GOOGLE SCHOLAR CROSSREF SINTA PORTAL GARUDA SCILIT DIMENSIONS